

COUNTRYSIDE PARTNERSHIPS PLC

BROOK FARM, DAWS HEATH ROAD, DAWS HEATH, ESSEX, SS7 2UG

FLOOD RISK ASSESSMENT & DRAINAGE STRATEGY

REPORT REF NO. W461-03 PROJECT NO. W461 JUNE 2022

HEAD OFFICE: 3rd Floor, The Hallmark Building, 52-56 Leadenhall Street, London, EC3M 5JE T | 020 7680 4088

ESSEX: 1 - 2 Crescent Court, Billericay, Essex, CM12 9AQ T | 01277 657 677

KENT: Suite 10, Building 40, Churchill Business Centre, Kings Hill, Kent, ME19 4YU T | 01732 752 155 MIDLANDS: Office 3, The Garage Studios, 41-43 St Mary's Gate, Nottingham, NG1 1PU T | 0115 697 0940

SOUTH WEST: City Point, Temple Gate, Bristol, BS1 6PL T | 0117 456 4994

SUFFOLK: Suite 110, Suffolk Enterprise Centre, 44 Felaw Street, Ipswich, IP2 8SJ T | 01473 407 321

Email: enquiries@ardent-ce.co.uk

CONTENTS

	Page
1. INTRODUCTION	1
Site Location	1
Development Proposals	2
2. POLICY CONTEXT	4
National Planning Policy Framework	4
Sustainable Drainage Systems - Non-statutory technical standards for sustainable drainage systems March 2015	4
South Essex Surface Water Management Plan (SWMP, 2012)	5
South Essex Level 1 Strategic Flood Risk Assessment (April, 2018)	5
Climate Change Allowances	6
Sequential Test Requirements	8
Exception Test Requirements	8
3. BASELINE CONDITIONS	10
Hydrology	10
Topography	10
Ground Conditions	10
Existing Sewer Infrastructure	12
4. SOURCES OF FLOODING	14
Flood Zone Designation	14
Fluvial / Tidal Flooding	15
Pluvial Flooding	16
Groundwater Flooding	17
Sewer Flooding	18
Artificial Sources	18
5. PROPOSED SURFACE WATER DRAINAGE STRATEGY	19
Existing Surface Water Discharge	19
Proposed Sustainable Drainage Systems (SuDS)	20
Long Term Storage and Urban Creep	23
Overland Flow Routes	23

BROOK FARM, I	W461-03 JUNE 2022	
Water Quality	,	23
Maintenance	and Management of System	24
Half Drain T	ime	24
6. PROPOSE	D FOUL WATER DRAINAGE STRATEGY	26
7. CONCLUS	IONS	27
APPENDICES	S	
Appendix A	Development Proposals	
Appendix B	Topographic Survey	
Appendix C	Asset Location Plan	
Appendix D	Existing Greenfield runoff calculations	
Appendix E	Preliminary Drainage Strategy	
Appendix F	MicroDrainage Simulations	
Appendix G	SuDS Treatment Table Indices	
Appendix H	Maintenance Schedule	
Appendix I	Anglian Water Capacity Confirmation	

DOCUMENT CONTROL SHEET

REV	ISSUE PURPOSE	AUTHOR	CHECKED	APPROVED	DATE
-	DRAFT	FH/LE	ВВ	DRAFT	31/05/2022
-	PLANNING	LE	AW Res	BB & Seeses	01/06/22

This report has been prepared for the exclusive use of Countryside Partnerships PLC. It should not be reproduced in whole or in part, or relied upon by third parties, without the express written authority of Ardent Consulting Engineers.

1. INTRODUCTION

- 1.1. Ardent Consulting Engineers (hereafter referred to as "Ardent") has been commissioned by Countryside Partnerships PLC to carry out a Flood Risk Assessment (FRA) for the proposed redevelopment of Brook Farm, Daws Heath Road (hereafter referred to as 'the site'). This FRA has been undertaken to support a Full Planning application. The development proposals include redevelopment of existing agricultural land to provide up to 173 residential units as a mixture of 2-bed, 3-bed, 4 bed and 5-bed houses with associated car parking, landscaping and sustainable drainage features
- 1.2. The contents of this FRA assess the implications of flood risk on the proposed development. This FRA has been prepared with specific reference to the requirements of National Planning Policy Framework (NPPF) updated in July 2021 and the Planning Practice Guidance (PPG), which superseded the Technical Guidance to the NPPF, in March 2014. This report also takes into consideration the requirements within the Non-statutory Technical Standards for Sustainable Drainage Systems (March 2015) and its Best Practice Guidance (July 2015).
- 1.3. This FRA and Drainage Strategy has been prepared to support a planning application to be submitted to Castle Point Borough Council (CPBC).

Site Location

- 1.4. The site, which occupies an area of approximately 18.92ha, is centred approximately on OS grid co-ordinates 581708mE, 188247mN and located immediately south of Daws Heath.
- 1.5. It is bounded by and accessed from Daws Heath Road to the west and bordered by the residential properties of Fairmead Avenue and Harseland Close to the north. The south-eastern boundary of the site is defined by Prittle Brook, a main river running west to east, which is also accompanied by semi-dense woodland. Agricultural land encompasses much of the southwest boundary.

1.6. The existing site is almost entirely comprised of arable farmland with a small number of grazing stock occupying land towards the far western boundary. The only existing buildings within the site boundary are a small cluster occupying around 3,850m² located to the southwest, which are agricultural in nature, and provide residence for the current landowner. Refer to **Figure 1-1** below for the site location.

Figure 1-1: Site Location Plan

Development Proposals

- 1.7. The proposals include the redevelopment of the site to provide 173 new dwellings with associated private gardens, parking, access roads, soft landscaping and drainage features. The eastern portion of the site is to be landscaped as open grassland and heathland, with an orchard proposed in the southern half of the site.
- 1.8. The proposed development is illustrated in Figure1-2; Refer to Appendix A for the full development proposals.

Figure 1-2: Proposed Development Layout

2. POLICY CONTEXT

National Planning Policy Framework

- 2.1. The National Planning Policy Framework (NPPF) was updated in July 2021; paragraph 159 to 169 inclusive, establishes the Planning Policy relating to flood risk management. The Technical Guide to the NPPF has been superseded by the Planning Practice Guidance (PPG) in March 2014
- 2.2. The main focus of the policy is to direct development towards areas of the lowest practicable flood risk and to ensure that all development is safe, without increasing flood risk elsewhere. The main considerations are:
 - Applying the Sequential Test, and if necessary, apply the Exception Test;
 - Safeguarding land from development that is required for current and future flood management;
 - using opportunities provided by new development and improvements in green and other infrastructure to reduce the causes and impacts of flooding, (making as much use as possible of natural flood management techniques as part of an integrated approach to flood risk management); and
 - Where climate change is expected to increase flood risk so that some existing development may not be sustainable in the long-term, seeking opportunities to relocate development, including housing, to more sustainable locations.
- 2.3. The Planning Practice Guidance (PPG) provides the methodology required to undertake the Sequential and Exception Tests.

Sustainable Drainage Systems - Non-statutory technical standards for sustainable drainage systems March 2015

2.4. The Non-statutory technical standards for sustainable drainage systems were published in March 2015. They should be used in conjunction with the Planning Practice Guidance. In addition, the Best

- Practice Guidance for the Non-statutory technical standards was published in July 2015 by LASOO.
- 2.5. The Local Planning Authority (LPA) may set local requirements for planning permission that have the effect of more stringent requirements than these non-statutory technical standards.
- 2.6. In addition, SuDS should be designed in accordance with CIRIA 753 SuDS Manual, which represents current best practice.

South Essex Surface Water Management Plan (SWMP, 2012)

- 2.7. The South Essex SWMP includes the administrative areas of Basildon Borough Council, Castle Point Borough Council and Rochford District Council (referred to as 'South Essex' throughout the report). The document is a plan which outlines the preferred surface water management strategy for South Essex and includes consideration of flooding from sewers, drains, groundwater and runoff from land, small watercourses and ditches that occurs as a result of heavy rainfall.
- 2.8. Within the Surface Water Management Plan for the region, the site lies just within the eastern most extents of the Critical Drainage Area (CDA) 'CAS 3'. The focus of recommendations for this area is largely in relation to improving maintenance and assessing online storage in relation to Prittle Brook.

South Essex Level 1 Strategic Flood Risk Assessment (April, 2018)

- A Strategic Flood Risk Assessment was completed by AECOM on behalf of South Essex
- 2.10. The SFRA summarizes:
 - On the mainland area of the Castle Point Borough, the Prittle Brook and Benfleet Hall Sewer pose the most significant fluvial risk with the southern part of South Benfleet and Hadleigh located within Flood Zone 2 and 3 as well as a small area along the course of the Prittle Brook. High Ground and Embankments protect the area from flooding however the area is still at residual risk
 - There is a high probability of surface water flooding within the Castle Point Borough. Surface water flood risk is highest on Canvey Island. A number of high risk flow paths are located in

the South Benfleet and Thundersley areas associated with the route of ordinary watercourses. Localised flooding within the Borough can be attributed to topographic depressions as well as insufficient capacity within watercourses. The management of the drainage system has also been found to be an exacerbating factor for previous surface water flooding events that have occurred within the Borough

2.11. The South Essex SFRA includes mapping of flood risk within the area.

Regional & Local Planning Policy

- 2.15. In the preparation of this report, specific reference is also made to the following regional and local planning policy pertinent to flood risk:
 - Castle Point New Local Plan (specifically Policy CC 6, Page 177);
 - Essex County Council Preliminary Flood Risk Assessment;
 - South Essex Catchment Flood Management Plan;
 - South Essex Water Cycle Study;
 - South Essex Surface Water Management Plan (Phase 1-4)
 - Castle Point Borough Council Stage 1 & 2 Strategic Flood Risk Assessment;
 - Castle Point Flood Risk Sequential and Exception Test Report for Housing Site Options.
- 2.16. Collectively the above documents and supporting evidence base provide a strategy for not only assessing flood risk at a regional level but also guidance on the management of surface water on a site-specific basis. As well as relating to flood risk and drainage, the South Essex Water Cycle Study also summarises the recommendations necessary to meet the planned growth throughout the district in relation to potable water provision, including the general requirements for individual development sites.

Climate Change Allowances

2.17. The Planning Practice Guidance states that to allow for the predicted impacts of climate change on Peak River Flow Allowances, consideration should be given to the catchment within which the site is located. The site is located within the South Essex Management Catchment and as such the following allowances detailed in **Table 2-1** are applicable to the site.

Table 2-1: Combined Essex Management Catchment peak river flow allowances

	Central	Higher	Upper
2020s	6%	11%	22%
2050s	5%	11%	27%
2080s	17%	26%	48%

- 2.18. For 'more' vulnerable development the Planning Practice Guidance states that the central allowance should be used. Therefore, under the NPPF, an allowance of 17% would achieve the policy requirements in assessing the flood risk associated with the development.
- 2.19. The Planning Practice Guidance states that to allow for the predicted impacts of climate change on surface water runoff within the Combined Essex Management Catchment, the following increases detailed in **Table 2-2** below to rainfall intensity should be allowed for. For development with a lifetime beyond 2100, the upper end allowances should be used.

Table 2-2: Combined Essex Management Catchment Peak Rainfall
Allowances

	Central	Upper			
3.3% annual	exceedance rai	nfall event			
2050s	20%	35%			
2070s	20%	35%			
1% annual exceedance rainfall event					
2050s	20%	45%			
2070s	25%	40%			

2.20. Therefore, under the NPPF an allowance of 45% for the effects of climate change for the 1% annual exceedance rainfall event would achieve the policy requirements in designing the drainage elements the proposed residential redevelopment.

Sequential Test Requirements

- 2.21. The aim of the sequential test is to steer new development to areas with the lowest risk of flooding from any source. Development should not be allocated or permitted if there are reasonably available sites appropriate for the proposed development in areas with a lower risk of flooding. The strategic flood risk assessment will provide the basis for applying this test. The sequential approach should be used in areas known to be at risk now or in the future from any form of flooding.
- 2.22. As none of the developable area is located near the Flood Zones 2 or 3, a Sequential Test should not be required. This should be confirmed with the LPA.

Exception Test Requirements

2.23. Table 2 (Flood risk vulnerability classification) of the Planning Practice Guidance (PPG) classes the residential use as More Vulnerable, following a sequential approach all residential dwellings would be located in Flood Zone 1. However, given that none of the developable area is within Flood Zones 2 and 3, an Exception Test is not anticipated to be required, this should be confirmed with the LPA. This is in line with Table 3 (refer to Figure 2-1 below) of the PPG.

Flood Zones	Flood Risk Vulnerability Classification								
	Essential infrastructure	Highly vulnerable	More vulnerable	Less vulnerable	Water compatible				
Zone 1	1	1	1	1	1				
Zone 2	1	Exception Test required	1	1	✓				
Zone 3a†	Exception Test required †	x	Exception Test required	/	1				
Zone 3b *	Exception Test required *	×	x	×	√ *				

Key:

- ✓ Development is appropriate
- X Development should not be permitted.

Figure 2-1: Extract from the PPG - Table 3: Flood Risk Vulnerability

3. BASELINE CONDITIONS

Hydrology

- 3.1. The nearest designated watercourse as defined by the Environment Agency is Prittle Brook which defines much of the south-eastern boundary of the site and flows in a west to easterly direction.
- 3.2. Within the site itself the landscape is characterised by an interconnecting series of vegetated ditches. In places and as shown on the topographic survey, a number of tracks utilised for agricultural purposes necessitate these ditches to be culverted.
- 3.3. In terms of larger bodies of water, an existing pond is located at the south west of the site and west of the existing buildings.

Topography

- 3.4. A topographical survey for the site was undertaken in May 2015 by Countryside Partnerships PLC and is provided in **Appendix B.**
- 3.5. The site generally falls from north to south, with the western portion draining towards an existing ditch and the eastern part of the site draining to Prittle Brook to the south east. The eastern area slopes quite steeply from north to south at a gradient of circa 1 in 26 with the overall level difference being around 18m. Moving westwards, the slope trends in a north-west to south-east direction. There is a north-south watershed in the western part of the site and to the west of this the land falls north-east to south-west.

Ground Conditions

- 3.6. The geology for the southern extents of the site is characterised by subaerial slope superficial deposits, comprised of head clay, silt, sand and gravels. These deposits are likely to be attributable to the encroachment of Prittle Brook along the southern boundary. Refer to Error! Reference source not found. 1 and Figure 3-2 below for BGS B edrock and Superficial Deposits details respectively.
- 3.7. The bedrock geology at the site is a mixture of the Bagshot Formation for the northern extents primarily comprised of sand (locally clayey)

and the Claygate Member to the south, made up of clay, silt and sand. Both of these members are effectively a geological result of shallow seas characteristic of siliciclastic sediments (comprising of fragments or clasts of silicate minerals) deposited as mud, silt, sand and gravel.

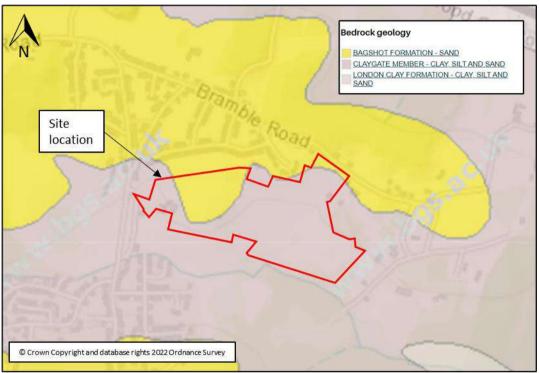


Figure 3 1: BGS Online Geology Mapping - Bedrock

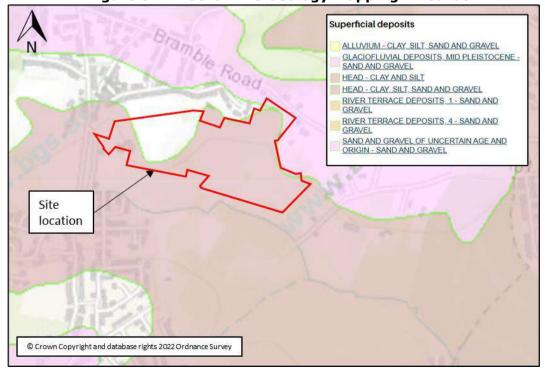


Figure 3-2: BGS Online Geology Mapping - Superficial Deposits

3.8. The nearest historic borehole log is located within Bramble Road immediately north of the site (dated 1973) and is summarised in **Table 3-1** below, groundwater was struck 8m below ground level.

Geological Classification	Lithology	Thickness (m)	Depth (m)
Soil	Silty Gravelly Clay	0.2	0.2
Sand and	Clayey gravelly sand. Sand course;		
Gravel of	gravel course and fine angular flints	0.7	0.9
Unknown Age	and rounded Tertiaries		
Bagshot Beds	Clayey silty fine sand. Soft, weathered mottled dark blue and pale greenish grey Interbedded silty clay and clayey fine sand. Finely laminated, moderate brown to yellowish orange	0.5 10.3	1.4 11.7
Claygate Beds	Very silty clay with rare fine sand, laminated	17.3	29.0
London Clay	Stiff olive grey clay	3.0+	32.0

Table 0-1: Existing Geology

- 3.9. The Environment Agency has classified the superficial deposits beneath the site as a combination of Secondary A and Secondary (Undifferentiated) Aquifers, with the bedrock geology classified as Secondary A.
- 3.10. Secondary A aquifers are permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers

Existing Sewer Infrastructure

3.7. **Figure 3-3** below shows that there are both foul and surface water sewers within the vicinity of the site, which serve the residential developments to both the north and the south of the site. There are three foul water sewers within the site boundary to the south of the site comprising of; 1no. 15" sewer, 1no. 12" sewer and a third sewer which is 450mm. There is also a 6" foul sewer which crosses the site from north to south.

3.8. An Anglian Water surface water sewer discharges to a pond immediately north of the site which also ultimately discharges to the on-site ditches.

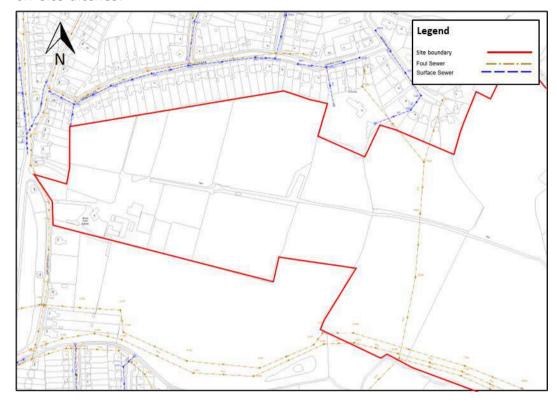


Figure 3-3: Existing Sewer Infrastructure

3.9. Refer to **Appendix C** for the Anglian Water Asset Plans.

4. SOURCES OF FLOODING

- 4.1. The NPPF requires flood risk from the following sources to be assessed, each of which are assessed separately below:
 - Fluvial sources (river flooding);
 - Tidal sources (flooding from the sea);
 - · Sewer Flooding;
 - Groundwater sources;
 - Pluvial sources (flooding resulting from overland flows);
 - Artificial sources, canals, reservoirs etc.; and,
 - It also requires the risk from increases in surface water discharge to be assessed (surface water management).

Flood Zone Designation

- 4.2. Flood Zones refer to the probability of river and sea flooding, ignoring the presence of defences. The NPPF Planning Practice Guidance defines Flood Zones as follows:
 - **Flood Zone 1: Low Probability**. Land having a less than 1 in 1,000 annual probability of river or sea flooding.
 - Flood Zone 2: Medium Probability. Land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or Land having between a 1 in 200 and 1 in 1,000 annual probability of sea flooding.
 - Flood Zone 3a: High Probability. Land having a 1 in 100 or greater annual probability of river flooding; or Land having a 1 in 200 or greater annual probability of sea flooding.
 - Flood Zone 3b: The Functional Floodplain. This zone comprises land where water has to flow or be stored in times of flood. Local planning authorities should identify in their Strategic Flood Risk Assessments areas of functional floodplain and its boundaries accordingly, in agreement with the Environment Agency

Fluvial / Tidal Flooding

4.3. According to the Environment Agency's indicative flood map for planning, as illustrated below, the site almost entirely within Flood Zone 1; a very low risk of fluvial flooding which corresponds to an annual flood probability of less than 0.1% (less than 1 in 1000-year return period).

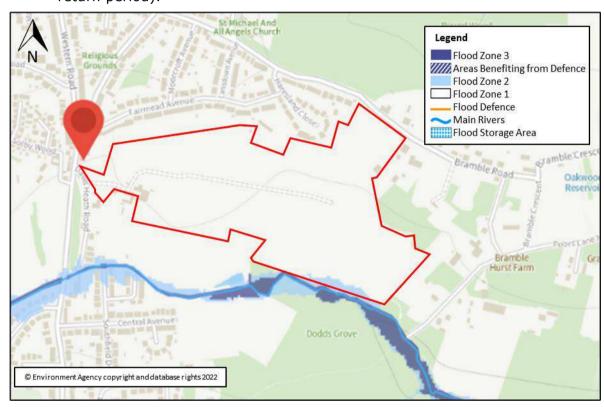


Figure 4-1: Environment Agency Flood Map for Planning

- 4.4. The nearest areas at risk of fluvial flooding are associated with Prittle Brook along the southwest boundary of the site where there are small areas of the site within Flood Zone 2 and Flood Zone 3. Notwithstanding, the nearest proposed developable areas of the site to these extents are approximately 200m north and elevated by circa 8m.
- 4.5. Given the above, fluvial flooding is not considered to pose a risk to the development.

4.6. There are no rivers or coastlines which are influenced by tidal flooding close to the site. Given the above, tidal flooding is not considered to pose a risk to the site.

Pluvial Flooding

- 4.7. A majority of the site is classified as having a very low risk of flooding as a result of surface water. There are two notable flow paths flowing north to south shown to be, partially, at medium-high risk of flooding. These are attributable to topography and the existing ditch network which passes through the site. The drainage proposals for the development are not only seeking to retain existing ditches but also provide additional storage features, which will seek to alleviate surface water flooding extents. Existing ditches will be maintained as part of the ongoing management plan for the development.
- 4.8. Following implementation of the proposed surface water drainage strategy and minor ground re-profiling, flooding from pluvial sources is considered low.

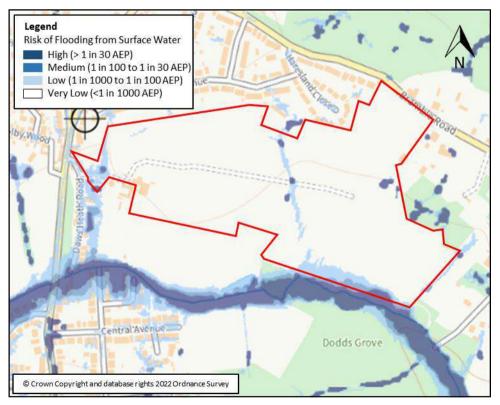


Figure 4-2: Environment Agency Flood Map for Surface Water

Groundwater Flooding

4.9. The Environment Agency's Areas Susceptible to Ground Water Flooding (AStGWf) map is provided in Appendix A of the South Essex SFRA (refer to **Figure 4-3** below). The AStGWf is a strategic scale map showing groundwater flood areas on a 1km square grid. The map displays the Site to be in a grid area with 25-50% chance of emergence of groundwater flooding.

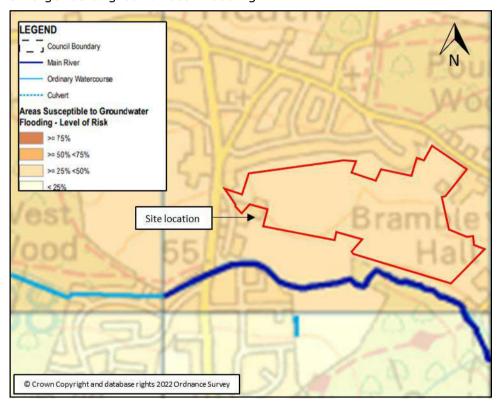


Figure 4-3: SFRA Ground Water Mapping

- 4.10. As outlined within the South Essex SFRA for the area, the predominant solid geology underlying the Castle Point Borough is London Clay. The presence of the above soils effectively creates an impermeable barrier to prevent groundwater rising to the surface and therefore significantly reduces risk of flooding.
- 4.11. Nevertheless, the location of Prittle Brook along the south west boundary gives rise to river terrace deposits that carry with them a higher risk of groundwater ingress.

- 4.12. Local boreholes located near the site show ground water at a depth of approximately 8m below ground. It is considered that groundwater would only pose a risk to sub ground level development. Since the development does not propose any below ground construction, groundwater is not seen as a flood risk to the development.
- 4.13. The EA has developed Groundwater Source Protection Zones (SPZ) to assist in assessing the risk to groundwater supplies taken from abstraction points. The application site is not located within a groundwater SPZ.

Sewer Flooding

- 4.14. During heavy rainfall, flooding from the sewer may occur if:
 - The rainfall event exceeds the capacity of the sewer/drainage system;
 - The system becomes blocked by debris or sediment; or
 - The system surcharges due to high water levels in receiving watercourses.
- 4.15. As part of the South Essex SFRA Anglian Water provided an extract from their DG5 Flood Register for the study area, which records historic internal and external sewer flooding events. Due to data protection requirements the data has not been provided at individual property level; rather the register comprises the number of properties within four digit postcode areas that have experienced flooding either internally or externally within the last 10 years There are between 6-10 recorded incidents of sewer flooding in the SS7 2 postcode.
- 4.16. The risk of sewer flooding is assessed low.

Artificial Sources

- 4.17. According to the Environment Agency's Flood risk from reservoir map, the Site is not in an area at risk of flooding from artificial sources.
- 4.18. The site is therefore considered to be at a 'very low' risk of flooding from artificial sources.

5. PROPOSED SURFACE WATER DRAINAGE STRATEGY

Existing Surface Water Discharge

- 5.1. The planning redline boundary equates to 18.92ha of predominantly greenfield land with a proposed developable area of approximately 6.42ha. Based on the topography of the Site, the site will be split into 4 catchments. The greenfield runoff generated onsite currently flows overland into the existing ditches to the west, running through the site and the EA main river Prittle Brook in the southeast corner of the site.
- 5.2. The existing greenfield runoff rates from the existing catchments have been determined using the ICP SuDS Mean Annual Flow Method. The catchment size has been based upon the proposed developable area of 6.42ha, thereby excluding any large areas proposed as open green spaces which will continue to drain freely at greenfield rate. As detailed below, the Site has been split into four separate catchments areas to accommodate the Peak Greenfield Runoff rates are presented in Table 5-1 below with an approximate existing catchment map in Figure 5-1. Greenfield runoff calculations can be found in Appendix D.

Table 5-1: Greenfield Discharge rates

		Existing Greenfield Run-off ra				
Catchment reference	Size (Ha)	Qbar	1 in 1 year	1 in 30 year	1 in 100 year	
Catchment 1	3.24	11.0	9.4	24.9	34.3	
Catchment 2	1.70	5.8	4.9	13.1	48.5	
Catchment 3	0.67	2.3	1.9	5.2	7.3	
Catchment 4	0.81	3.0	2.3	6.2	8.8	

Figure 5-1: Catchment Areas

Proposed Sustainable Drainage Systems (SuDS)

- 5.3. DEFRA's Non-statutory technical guidance for Sustainable Drainage Systems and CIRIA Guidance C753 "The SuDS Manual" have been used to determine the appropriate SuDS Strategy, which considers the spatial and environmental constraints of the Site.
- 5.4. Under the NPPF and its Planning Practice Guidance an allowance of 45% for the effects of climate change will achieve the policy requirements for the proposed development.
- 5.5. In accordance with the NPPF Planning Practice Guidance, surface water runoff should be disposed of according to the following hierarchy:
 - into the ground (infiltration);
 - to a surface water body;
 - to a surface water sewer, highway drain, or another drainage system; or
 - to a combined sewer.
- 5.6. As discussed in **Section 3**, The Site is underlain by Claygate Member and Bagshot formation, which characteristically have poor infiltration potential and thus considered infiltration for the site will not be possible or appropriate.

Figure 5-2: Proposed Catchment Areas

- 5.7. Due to the topography of the site and the available space, it is proposed to discharge surface water runoff from catchment 1 into the existing ditch to the west of the site and the rest of the site to discharge to the existing catchment 3 and 4 into the watercourse running west to east towards the Prittle Brook. Refer to **Figure 5-2** for the proposed catchment areas.
- 5.8. Surface water will be attenuated within a series of cascading Sustainable Urban Drainage features prior to being discharged to the existing ditch network at a restricted rate.
- 5.9. The constraints and opportunities for the use of SuDS techniques are appraised using the Management Train approach outlined in CIRIA C753 'The SuDS Manual' in **Table 5-2** below.

Table 5-2: Existing and Proposed Areas

Type:	Infiltration Devices (Source Control)
Constraints:	Underlying geology is underlain by Claygate member which has
	limited infiltration potential
Opportunities:	None due to underlying geology
Type:	Lined Permeable Paving (Source Control)
Constraints:	Can only be provided within non-adoptable areas. Additional
	maintenance requirements over more traditional SuDs features.
Opportunities:	Use of lined permeable paving can be provided if additional
	treatment and storage is required.
Type:	Rainwater Harvesting (Source Control)
Constraints:	The benefits of rainwater harvesting on a specific design storm
	event cannot be quantified, due to the seasonal availability of
	storage within the structure.

Opportunities:	It is difficult to quantify contribution, and therefore not included within calculations as part of this surface water management strategy
Type:	Attenuation Basins
Constraints:	In order to provide practicable attenuation benefits 1:3 side- slope swales tend to require a significant land requirement. Greater land take is also required due to the steep nature of the site.
Opportunities:	The proposed landscaped area areas around the edge of the development could provide basins for storage.
Type:	GreenRoofs
Constraints:	Subject to Architect's design.
Opportunities:	None due to the proposed pitched roofs of the dwellings.
Type:	Attenuation Tanks (end of pipe treatment)
Constraints:	None
Opportunities:	Should additional attenuation be required this could be achieved by use of oversized sewers or geo-cellular storage attenuation.

5.10. After consideration of the CIRIA C753 SuDS Management Train approach, the most viable SuDS options for this site is a solution combining a series of cascading attenuation basins and highway swales where possible. Refer to **Drawing No. W461-011 & W461-012** in **Appendix E** for the proposed surface water drainage strategy.

Proposed surface water runoff rates

5.11. The proposed discharge rates for the site are proposed to be restricted to a maximum of the 1 in 1 year greenfield rates for all storm events up to and including the 1 in 100 year plus 45% climate change event. For a breakdown of the existing and the proposed rates, refer to **Table 5-3**.

Table 5-3: Proposed & Existing Rates

Return Period	1:1			1:100			1:100 + 45% CC		
Catchment reference	Exis. (I/s)	Prop. (I/s)	Red. %	Exis. (I/s)	Prop. (I/s)	Red.	Exis. (I/s)	Prop. (I/s)	Red. %
1	9.4	9.4	0	34.3	9.4	73	n/a	9.4	n/a
2	4.9	0	100	48.5	0	100	n/a	0	n/a
3*	1.9	1.9	0	7.3	1.9	74	n/a	1.9	n/a
4*	2.3	2.3	0	8.8	2.3	74	n/a	2.3	n/a

^{*}Discharge location combined, split across the 2 catchments

5.12. MicroDrainage modelling results show there is no flooding on the Site during rainfall events up to the 1 in 100 year including 45% climate change rainfall event. MicroDrainage modelling results are included in **Appendix F.**

Long Term Storage and Urban Creep

- 5.13. It is proposed to restrict discharge rates from the development site to a discharge rate equal to the 1 in 1 year greenfield rates for the proposed catchments. As such, the Long-Term Storage would not required in accordance with the recommendations of The SuDS Manual (C753).
- 5.14. It is proposed to develop the site for a residential use. As such, 10% urban creep on houses and garages only have been considered for this development.

Overland Flow Routes

- 5.15. The surface water drainage strategy has been designed to ensure minimal flooding occurs as a result of the 1 in 100-year rainfall event (including an allowance for climate change). Any minor flooding would be contained within the extent of the highway.
- 5.16. Site levels will be designed to ensure that exceedance flows are directed towards the proposed drainage network and away from buildings. Exceedance flows will be directed to the proposed surface water basins, the watercourses and ditches.
- 5.17. There is substantial volume provided within the freeboard of each basin, however, should the capacity of the surface water basins be exceeded during an extreme rainfall event, surface water would flow towards existing watercourses and ditches. Exceedance routes can be seen on drawing W461-011 & W461-012, within Appendix G.

Water Quality

5.18. An assessment of the water quality of surface water runoff has been carried out in line with CIRIA C753 requirements, refer to **Appendix** H.

- 5.19. In determining the necessary SuDS treatment methods, reference is made to Table 26.2, Table 26.3 and Table 26.4 of the SuDS Manual (CIRIA C753), which have been duplicated in **Appendix G**. The tables outline the 'Simple Index Approach' which sets out the water treatment criteria in relation to land use and SuDS performance evidence. To ensure sufficient treatment is proposed for surface waters, the total pollution mitigation index of the selected SuDS methods must equal or exceed the pollution hazard index for the site.
- 5.20. Based upon the proposed estate road layout within the development, it is anticipated that the majority of the roads within the development parcels will accommodate less than 300 traffic movements per day, apart from the initial access to the site which will be deemed as 'low' to 'medium'.
- 5.21. As the calculations demonstrate, a series of cascading basins provide sufficient treatment for the development. It has therefore been demonstrated that adequate treatment is provided within the proposed SuDS network prior to discharge of run-off into the existing watercourses. In addition to the basins considered within the pollution assessment, additional roadside swales will be incorporated to provide additional source control and treatment.

Maintenance and Management of System

- 5.22. The maintenance of all SuDS components will be in accord with the best practices and the CIRIA C753 The SuDS Manual. The recommended Operation and Maintenance requirements for the proposed swales and detention basin are outlined in the Management Plan in Appendix H.
- 5.23. A management company will be appointed to maintain any parts of the network which are not to be offered for adoption to Anglian Water.

Half Drain Time

5.24. The half drain time for the development, after a 1 in 30 year plus climate change event, can be seen within **Table 5-4**. The half drain time requirements set out within the ECC Sustainable Drainage

Systems Design Guide (February 2020), is to half drain within 24 hours for a 1 in 30 year plus climate change storm event. If the half drain time is not met, then the basin must accommodate a 1 in 10 year storm directly after the 1 in 30 year storm.

Table 5-3: Half Drain Times

Basin	Discharge rate (I/s)	Total Volume after storm (m³)	Half Drain Time (hours)	Does it meet the 24 hour half drain time?	Freeboard after 1:30 year + CC storm (mm)	Freeboard after a 1:10 year storm and 1 in 30 year (mm)
1A & 1B	9.4	83	1.3	Yes	587	n/a
2A	180	759	0.6	Yes	560	n/a
2B	20	1499	10.4	Yes	526	n/a
2C	4.2	2398	79.3	No	495	74
4	1.3	303	32.4	No	486	203

- 5.25. Basin 1A, 1B, 2A and 2B can be seen to half drain greatly under the 24-hour requirement.
- 5.26. Basin 2C & 4 do not meet the half drain time requirement, half draining within 79.3 and 32.4 hours respectively. As per the ECC SuDS Design Guide, if the half drain time of 24 hours cannot be achieved after a 1 in 30 year plus climate change event, then a 1 in 10 year storm event must be accommodate directly after a 1 in 30 year storm event. The freeboard within Basin after a 1:30 year storm event will be 495mm for Basin 2C and 486mm for Basin 4. A 1 in 10 year storm has been run after the 30 year storm and shows that a freeboard of 74mm and 203mm are still provided. For further calculations on the storm events, refer to **Appendix F**.

6. PROPOSED FOUL WATER DRAINAGE STRATEGY

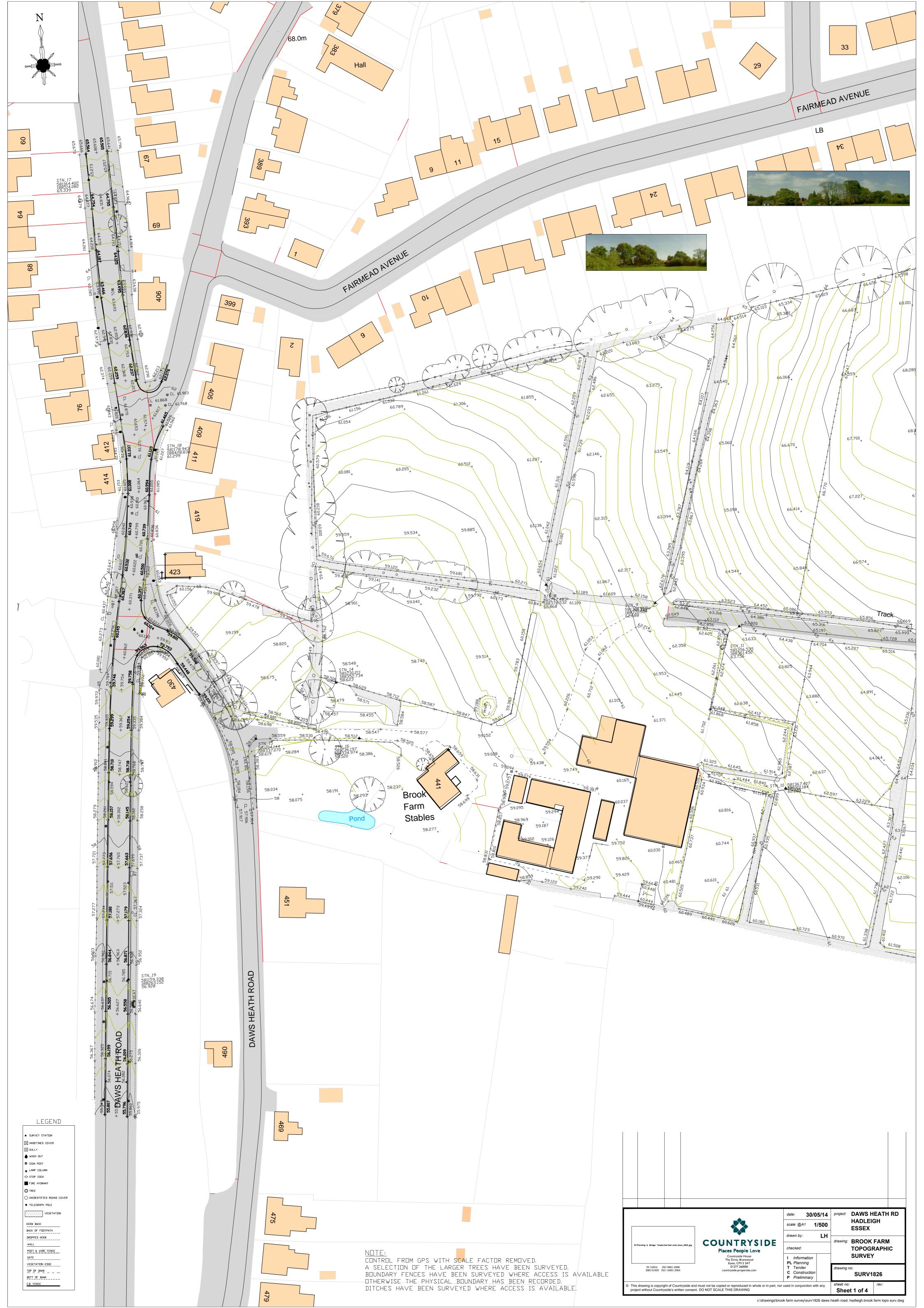
- 6.1. The existing site is currently greenfield land, and thus has no foul water flows associated with the site.
- 6.2. Based on the Sewerage Sector Guidance Appendix C of 0.05 l/s per dwelling, the peak foul flow rate for the proposed development is calculated to be 8.65l/s.
- 6.3. There is currently a 150mm dia. foul sewer running through the eastern half of the development. It is proposed that a small section of the existing sewer will be diverted through the development.
- 6.4. It is proposed that foul flows from the development will discharge into the existing Anglian Water foul sewers within the development boundary.
- 6.5. Under the Ofwat Charging agreement, from April 2020, existing sewer networks are obliged to accommodate flows from new developments and Anglian Water have confirmed capacity within their network. Refer to **Appendix I** for the confirmation of capacity.
- 6.6. For the foul drainage strategy, refer to **Appendix E**.

7. CONCLUSIONS

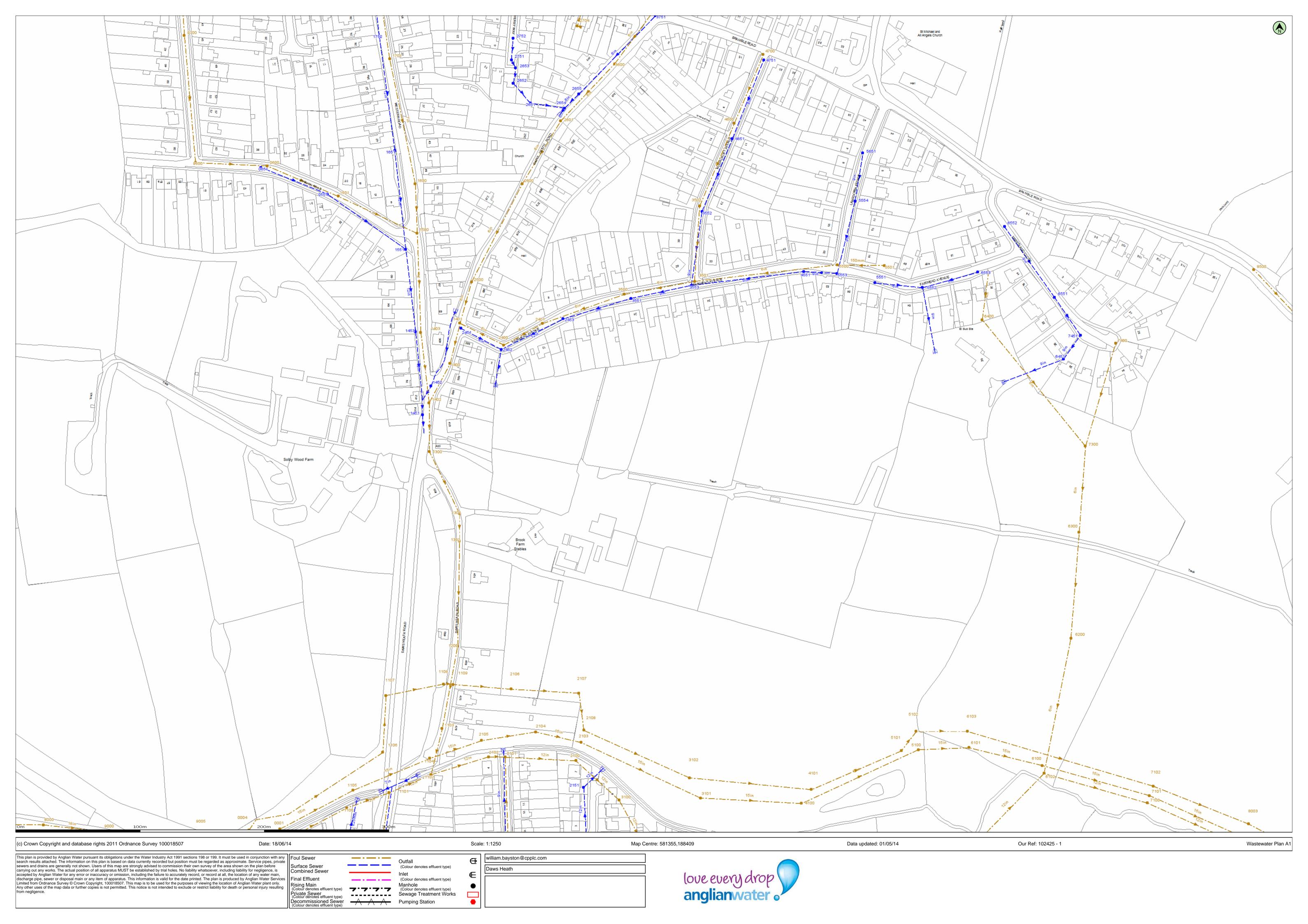
- 7.1. This FRA has been produced to support the planning application for the proposed residential development at Brook Farm.
- 7.2. The proposal includes the redevelopment of the site to provide 173 new dwellings with associated private gardens, parking, access roads, soft landscaping and drainage features.
- 7.3. The proposed developable areas of the site are assessed to be within Flood Zone 1 and therefore not at risk of flooding from fluvial or tidal sources.
- 7.4. Flood risk from reservoirs and artificial sources, pluvial sources, overland flows and groundwater are all considered to be low following the application of mitigation measures and the proposed surface water drainage strategy.
- 7.5. The drainage strategy set out in this report has been undertaken to accommodate all of the flows from the existing site and discharge at the 1 in 1 year greenfield rate for all events up to and including the 1 in 100 year + 45% climate change. The proposal is to discharge a portion of the site to the existing ditch on the western edge and the remainder of the site to discharge to the existing ditch running through the centre of the site prior to discharging to the EA Main River in the southeaster corner of the site.
- 7.6. The drainage strategy is suitable to protect the site and surrounding areas from surface water flooding for all events up to and including the 1 in 100-year storm event including a 45% allowance for climate change.
- 7.7. The peak foul flow rate for the proposed development is calculated to be 8.65l/s. It is proposed that foul flows from the development will discharge into the Anglian Water foul sewer running through the site. Confirmation of capacity has been received from Anglian Water for a connection to their 150mm diameter sewer within the site boundary.

7.8. In conclusion, this FRA demonstrates that the proposals are consistent with the aims of NPPF, PPG and ECC SuDS Guidance. The site would not be at risk of flooding or increase the flood risk to others.

Appendix A


Development Proposals

Appendix B
Topographical Survey



Appendix C
Asset Location Plan

Manhole Reference		Northing	Liquid Type	Cover Level	Invert Level	Depth to Inve
001	581054	188083	F	-	-	-
004	581030	188082	F	-	-	-
)600 1100	581044 581108	188616 188100	F	-	-	-
1101	581142	188112	F	-	-	-
1102	581176	188127	F	-	-	-
1103	581185	188164	F	-	-	-
1104	581175	188140	F	-	-	-
1105 1106	581113 581137	188114 188145	F	-	-	-
1107	581140	188190	F	-	-	-
1108	581186	188200	F	-	-	-
1109	581194	188199	F	-	-	-
1200	581197	188230	F	-	-	-
1300	581175	188386	F	-	-	-
1301 1302	581199 581199	188337 188315	F	-	-	2.05
1400	581191	188457	F	-	-	-
1401	581199	188490	F	-	-	-
1402	581174	188426	F	-	-	-
1403	581168	188482	F	-	-	-
1500 1501	581165 581101	188562 188592	F	-	-	-
1600	581163	188601	F	-	-	-
1701	581143	188702	F	-	-	-
2100	581292	188138	F	-	-	-
2101	581236	188141	F	-	-	-
2102	581222	188141	F	-	-	-
2103 2104	581297 581260	188153 188161	F	-	-	-
2104	581260	188154	F	-	-	-
2106	581241	188196	F	-	-	-
2107	581295	188192	F	-	-	-
2108	581299	188163	F	-	-	-
2400	581234	188472	F	-	-	-
2401 2500	581265 581208	188489 188523	F	-	-	-
2600	581249	188602	F	-	-	-
2601	581280	188652	F	-	-	-
2704	581294	188728	F	-	-	-
3100	581327	188106	F	-	-	-
3101	581393	188108	F	-	-	-
3102 3500	581384 581331	188124 188513	F	-	-	-
3501	581388	188523	F	-	-	-
3502	581392	188584	F	-	-	-
3600	581324	188698	F	-	-	-
4100	581474	188104	F	-	-	-
4101 4600	581482 581420	188115 188650	F	-	-	-
4700	581443	188705	F	-	-	-
5100	581568	188147	F	-	-	-
5101	581554	188146	F	-	-	-
5102	581566	188162	F	-	-	-
5500	581503	188536	F	-	-	-
5501 6100	581540 581667	188536 188134	F	-	-	-
6101	581608	188149	F	-	-	-
6102	581669	188128	F	-	-	-
6103	581607	188162	F	-	-	-
6200	581690	188237	F	-	-	-
6300	581697	188322	F	-	-	-
6400 7100	581619 581752	188492 188104	F	-	-	-
7101	581752	188110	F	-	-	-
7102	581756	188118	F	-	-	-
7300	581702	188391	F	-	-	-
7400	581726	188473	F	-	-	-
8000	580865	188087	F	-	-	-
8003 8500	581833 581837	188087 188533	F	-	-	1.8
9000	580912	188081	F	-	-	-
9600	580987	188619	F	-	-	-
9700	580978	188721	F	-	-	-
0551	581093	188593	S	-	-	-
0651	581039	188615	S	-	-	-
1451 1452	581169 581176	188416 188439	S	-	-	-
1453	581164	188483	S	-	-	-
1551	581156	188549	S	-	-	-
1651	581147	188628	S	-	-	-
1752	581135	188720	S	-	-	-
2151 2451	581299 581200	188117 188485	S	-	-	1.49
2451 2452	581200	188485	S	-	-	1.49
2453	581282	188493	S	-	-	1.66
2651	581256	188666	S	-	-	-
2652	581242	188682	S	-	-	-
2653	581244	188695	S	-	-	-
2654 2655	581283	188662	S	-	-	-
2655 2751	581295 581241	188674 188701	S	-	-	-
2751 2752	581242	188718	S	-	-	-
3551	581337	188510	S	-	-	1.91
3552	581394	188579	S	-	-	1.82
3553	581385	188520	S	-	-	1.4
3751	581357	188737	S	-	-	0.76
4551	581476 581418	188531 188638	S	-	-	1.8
unn i	J01410	⊥ 100038	ان	-	_	1.33
4651 4751			S	-	-	1.22
4751 5551	581443 581533	188701 188522	S S	-	-	1.22 1.68

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
5554	581517	188588	S	-	-	1.73
5651	581523	188626	S	-	-	1.42
6451	581684	188461	S	-	-	1
6551	581677	188510	S	-	-	1.65
6552	581637	188567	S	-	-	1.45
6553	581615	188531	S	-	-	1.45
7451	581698	188480	S	-	-	1.55
						I

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
		9				

Manhole Reference	Easting	Northing	Liquid Type	Cover Level	Invert Level	Depth to Invert
					Our	Ref: 102425 -

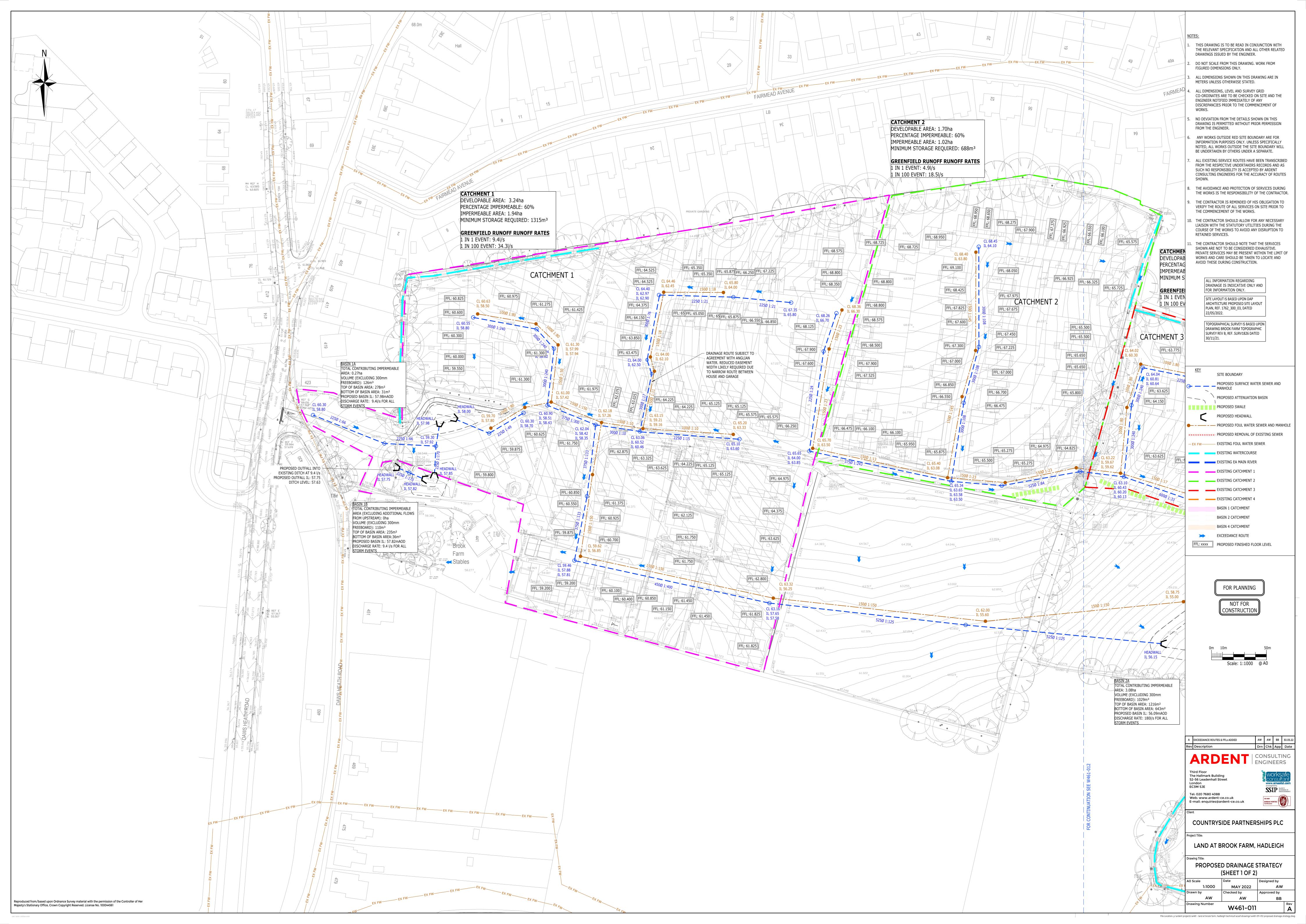
Appendix D
Existing Greenfield Runoff Calculations

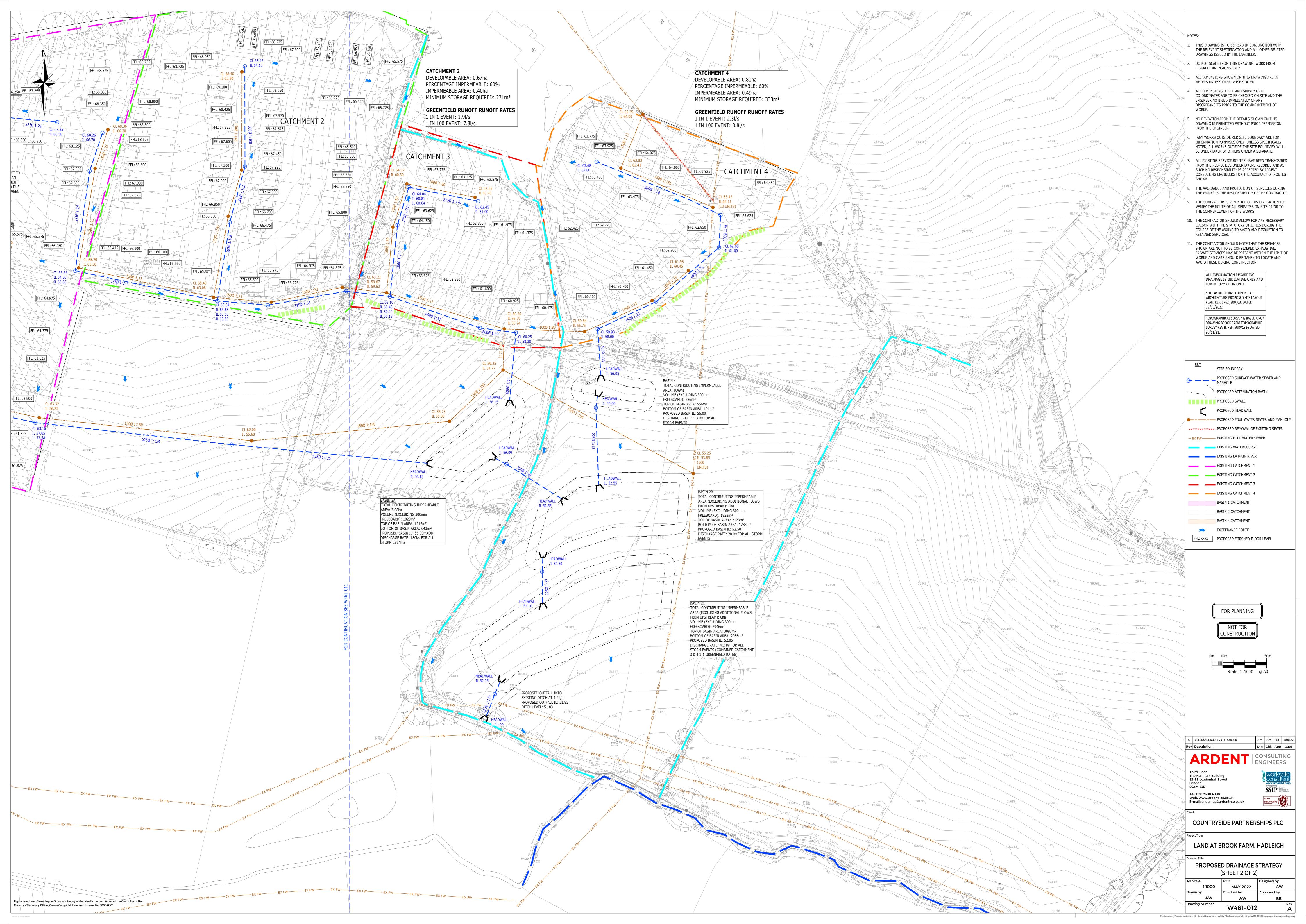
Ardent		Page 1
3rd Floor, The Hallmark Buil		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 09/05/2022 14:31	Designed by awren	Desipago
File	Checked by	Diali laye
Innovyze	Source Control 2020.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 1 Soil 0.450
Area (ha) 1.000 Urban 0.000
SAAR (mm) 565 Region Number Region 6


Results 1/s


QBAR Rural 3.4 QBAR Urban 3.4

Q1 year 2.9

Q1 year 2.9 Q30 years 7.7 Q100 years 10.9

Appendix E
Preliminary Drainage Strategy

Appendix F
Microdrainage Simulations

Ardent		Page 1
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 15:44	Designed by awren	Desipago
File	Checked by	Dialilade
Innovvze	Source Control 2020.1	•

Cascade Summary of Results for W461 - Basin 1A.SRCX

Upstream Outflow To Overflow To Structures

(None) W461 - Basin 1B.SRCX (None)

	Stor		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
1.5	min	Summer	0.821	0.821	9.3	60.4	ОК
		Summer			9.3		
		Summer			9.3		
120		Summer					
180		Summer				80.3	ОК
240	min	Summer	0.925	0.925	9.3	75.5	ОК
360	min	Summer	0.861	0.861	9.3	66.0	ОК
480	min	Summer	0.793	0.793	9.3	56.7	ОК
600	min	Summer	0.709	0.709	9.3	46.4	ОК
720	min	Summer	0.626	0.626	9.3	37.4	ОК
960	min	Summer	0.473	0.473	9.3	23.7	ОК
1440	min	Summer	0.248	0.248	9.1	9.3	ОК
2160	min	Summer	0.140	0.140	7.6	4.5	ОК
2880	min	Summer	0.114	0.114	6.0	3.5	ОК
4320	min	Summer	0.091	0.091	4.3	2.7	ОК
5760	min	Summer	0.079	0.079	3.4	2.3	ОК

	Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
4.5		~	100 000	0 0	70.4	0.4
		Summer		0.0	70.4	24
30	min	Summer	90.986	0.0	92.1	37
60	min	Summer	56.713	0.0	114.8	64
120	min	Summer	34.148	0.0	138.3	104
180	min	Summer	25.042	0.0	152.1	136
240	min	Summer	19.977	0.0	161.8	170
360	min	Summer	14.486	0.0	176.0	238
480	min	Summer	11.532	0.0	186.8	308
600	min	Summer	9.655	0.0	195.5	368
720	min	Summer	8.347	0.0	202.8	428
960	min	Summer	6.629	0.0	214.8	540
1440	min	Summer	4.783	0.0	232.5	756
2160	min	Summer	3.446	0.0	251.2	1100
2880	min	Summer	2.728	0.0	265.1	1468
4320	min	Summer	1.960	0.0	285.8	2204
5760	min	Summer	1.549	0.0	301.1	2936

Ardent		Page 2
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 15:44	Designed by awren	Degingago
File	Checked by	Dialilage
Innovyze	Source Control 2020.1	

Cascade Summary of Results for W461 - Basin 1A.SRCX

	Stor Even		Max Level	Max Depth	Max Control	Max Volume	Status
			(m)	(m)	(1/s)	(m³)	
7200	min	Summer	0.071	0.071	2.8	2.1	O K
8640	min	Summer	0.065	0.065	2.5	1.9	O K
10080	min	Summer	0.061	0.061	2.2	1.7	O K
15	min	Winter	0.879	0.879	9.3	68.7	O K
30	min	Winter	0.995	0.995	9.3	87.0	O K
60	min	Winter	1.065	1.065	9.3	99.3	O K
120	min	Winter	1.066	1.066	9.3	99.5	O K
180	min	Winter	1.032	1.032	9.3	93.5	O K
240	min	Winter	0.993	0.993	9.3	86.6	O K
360	min	Winter	0.904	0.904	9.3	72.4	O K
480	min	Winter	0.803	0.803	9.3	58.1	O K
600	min	Winter	0.666	0.666	9.3	41.7	O K
720	min	Winter	0.534	0.534	9.3	28.7	O K
960	min	Winter	0.302	0.302	9.3	12.1	O K
1440	min	Winter	0.140	0.140	7.6	4.5	O K
2160	min	Winter	0.107	0.107	5.5	3.3	O K
2880	min	Winter	0.092	0.092	4.4	2.7	O K
4320	min	Winter	0.075	0.075	3.1	2.2	O K
5760	min	Winter	0.066	0.066	2.5	1.9	O K

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
7200	min	Summer	1.289	0.0	313.3	3672
8640	min	Summer	1.110	0.0	323.6	4360
10080	min	Summer	0.977	0.0	332.5	4968
15	min	Winter	138.993	0.0	78.8	24
30	min	Winter	90.986	0.0	103.2	37
60	min	Winter	56.713	0.0	128.6	64
120	min	Winter	34.148	0.0	154.9	116
180	min	Winter	25.042	0.0	170.4	146
240	min	Winter	19.977	0.0	181.2	184
360	min	Winter	14.486	0.0	197.1	258
480	min	Winter	11.532	0.0	209.2	332
600	min	Winter	9.655	0.0	219.0	392
720	min	Winter	8.347	0.0	227.2	446
960	min	Winter	6.629	0.0	240.5	540
1440	min	Winter	4.783	0.0	260.3	736
2160	min	Winter	3.446	0.0	281.3	1100
2880	min	Winter	2.728	0.0	297.0	1460
4320	min	Winter	1.960	0.0	320.1	2136
5760	min	Winter	1.549	0.0	337.2	2904
		©	1982-20	20 Inno	vyze	

Ardent		Page 3
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 15:44	Designed by awren	Desinago
File	Checked by	Diali laye
Innovyze	Source Control 2020.1	

Cascade Summary of Results for W461 - Basin 1A.SRCX

Storm Event		Max Level (m)	-	Max Control (1/s)		Status	
7200	min	Winter	0.059	0.059	2.1	1.7	ОК
8640	min	Winter	0.054	0.054	1.8	1.5	O K
10080	min	Winter	0.051	0.051	1.6	1.4	ОК

Storm		Rain Flooded I		Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
	7200 min Winter	1.289	0.0	350.9	3560	
	8640 min Winter	1.110	0.0	362.4	4256	
	10080 min Winter	0.977	0.0	372.4	5048	

Ardent		Page 4
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 15:44	Designed by awren	Desipago
File	Checked by	Dialilade
Innovyze	Source Control 2020.1	

Cascade Rainfall Details for W461 - Basin 1A.SRCX

 Return
 Redurn (years)
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.407
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.270

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.090	4	8	0.090	8	12	0.090

Ardent		Page 5
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 15:44	Designed by awren	Desipago
File	Checked by	Diali laye
Innovvze	Source Control 2020.1	•

Cascade Model Details for W461 - Basin 1A.SRCX

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 26.0 1.200 215.0 1.500 278.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0139-9400-1200-9400 Design Head (m) 1.200 Design Flow (1/s) 9.4 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes 139 Diameter (mm) 0.000 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.200	9.4	Kick-Flo®	0.769	7.6
	Flush-Flo™	0.355	9.3	Mean Flow over Head Range	_	8.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)						
0.100	5.0	1.200	9.4	3.000	14.5	7.000	21.7
0.200	8.8	1.400	10.1	3.500	15.6	7.500	22.5
0.300	9.3	1.600	10.8	4.000	16.6	8.000	23.2
0.400	9.3	1.800	11.4	4.500	17.6	8.500	23.9
0.500	9.2	2.000	12.0	5.000	18.5	9.000	24.5
0.600	8.9	2.200	12.5	5.500	19.4	9.500	25.2
0.800	7.8	2.400	13.0	6.000	20.2		
1.000	8.6	2.600	13.5	6.500	21.0		

Ardent		Page 1
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 15:44	Designed by awren	Designado
File	Checked by	Dialilade
Innovyze	Source Control 2020.1	

Cascade Summary of Results for W461 - Basin 1B.SRCX

Upstream Outflow To Overflow To Structures

W461 - Basin 1A.SRCX (None) (None)

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	0.212	0.212	8.8	6.8	ОК
30	min	Summer	0.212	0.212	8.8	6.8	ОК
60	min	Summer	0.212	0.212	8.8	6.9	ОК
120	min	Summer	0.212	0.212	8.8	6.9	ОК
180	min	Summer	0.212	0.212	8.8	6.9	ОК
240	min	Summer	0.212	0.212	8.8	6.8	ОК
360	min	Summer	0.215	0.215	8.8	7.0	ОК
480	min	Summer	0.224	0.224	8.9	7.3	ОК
600	min	Summer	0.232	0.232	8.9	7.7	ОК
720	min	Summer	0.245	0.245	9.0	8.3	ОК
960	min	Summer	0.259	0.259	9.1	8.9	O K
1440	min	Summer	0.215	0.215	8.8	7.0	ОК
2160	min	Summer	0.142	0.142	7.5	4.2	ОК
2880	min	Summer	0.116	0.116	6.0	3.3	O K
4320	min	Summer	0.092	0.092	4.4	2.5	O K
5760	min	Summer	0.080	0.080	3.4	2.1	ОК

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	138.993	0.0	70.3	128
30	min	Summer	90.986	0.0	92.1	175
60	min	Summer	56.713	0.0	114.8	222
120	min	Summer	34.148	0.0	138.3	274
180	min	Summer	25.042	0.0	152.1	314
240	min	Summer	19.977	0.0	161.8	350
360	min	Summer	14.486	0.0	176.0	416
480	min	Summer	11.532	0.0	186.8	470
600	min	Summer	9.655	0.0	195.5	500
720	min	Summer	8.347	0.0	202.8	536
960	min	Summer	6.629	0.0	214.8	622
1440	min	Summer	4.783	0.0	232.4	798
2160	min	Summer	3.446	0.0	251.2	1108
2880	min	Summer	2.728	0.0	265.1	1472
4320	min	Summer	1.960	0.0	285.7	2196
5760	min	Summer	1.549	0.0	301.1	2904

Ardent		Page 2
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 15:44	Designed by awren	Designado
File	Checked by	Dialilage
Innovyze	Source Control 2020.1	

Cascade Summary of Results for W461 - Basin 1B.SRCX

Storm Event		Max Level	Max Depth	Max Control	Max Volume	Status	
			(m)	(m)	(1/s)	(m³)	
7200	min	Summer	0.071	0.071	2.8	1.9	ОК
8640	min	Summer	0.066	0.066	2.5	1.7	O K
10080	min	Summer	0.061	0.061	2.2	1.6	O K
15	min	Winter	0.212	0.212	8.8	6.8	O K
30	min	Winter	0.212	0.212	8.8	6.9	O K
60	min	Winter	0.212	0.212	8.8	6.9	O K
120	min	Winter	0.213	0.213	8.8	6.9	O K
180	min	Winter	0.213	0.213	8.8	6.9	O K
240	min	Winter	0.212	0.212	8.8	6.9	O K
360	min	Winter	0.212	0.212	8.8	6.8	O K
480	min	Winter	0.221	0.221	8.9	7.2	O K
600	min	Winter	0.241	0.241	9.0	8.1	O K
720	min	Winter	0.263	0.263	9.1	9.1	O K
960	min	Winter	0.249	0.249	9.0	8.4	O K
1440	min	Winter	0.143	0.143	7.6	4.2	O K
2160	min	Winter	0.108	0.108	5.5	3.0	O K
2880	min	Winter	0.092	0.092	4.4	2.5	O K
4320	min	Winter	0.076	0.076	3.2	2.0	O K
5760	min	Winter	0.066	0.066	2.5	1.7	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
7200	min	Summer	1.289	0.0	313.3	3672
8640	min	Summer	1.110	0.0	323.6	4400
10080	min	Summer	0.977	0.0	332.5	5048
15	min	Winter	138.993	0.0	78.8	146
30	min	Winter	90.986	0.0	103.2	196
60	min	Winter	56.713	0.0	128.6	248
120	min	Winter	34.148	0.0	154.9	304
180	min	Winter	25.042	0.0	170.4	344
240	min	Winter	19.977	0.0	181.2	378
360	min	Winter	14.486	0.0	197.1	444
480	min	Winter	11.532	0.0	209.2	498
600	min	Winter	9.655	0.0	219.0	516
720	min	Winter	8.347	0.0	227.2	544
960	min	Winter	6.629	0.0	240.5	598
1440	min	Winter	4.783	0.0	260.3	744
2160	min	Winter	3.446	0.0	281.3	1104
2880	min	Winter	2.728	0.0	297.0	1468
4320	min	Winter	1.960	0.0	320.0	2200
5760	min	Winter	1.549	0.0	337.2	2920
		©:	1982-20	20 Inno	vyze	

Ardent		Page 3
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 15:44	Designed by awren	Desipago
File	Checked by	Diali laye
Innovyze	Source Control 2020.1	•

Cascade Summary of Results for W461 - Basin 1B.SRCX

Storm Event		Max Level (m)	-	Max Control (1/s)		Status	
7200	min	Winter	0.060	0.060	2.1	1.6	ОК
8640	min	Winter	0.055	0.055	1.8	1.4	O K
10080	min	Winter	0.051	0.051	1.6	1.3	ОК

Storm	Rain	Flooded	Discharge	Time-Peak	
Event	(mm/hr)	Volume	Volume	(mins)	
		(m³)	(m³)		
7200 min Winter	1.289	0.0	350.9	3600	
8640 min Winter	1.110	0.0	362.4	4376	
10080 min Winter	0.977	0.0	372.4	4992	

Ardent		Page 4
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 15:44	Designed by awren	Designado
File	Checked by	Dialilade
Innovyze	Source Control 2020.1	

Cascade Rainfall Details for W461 - Basin 1B.SRCX

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.407
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

Ardent		Page 5
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 15:44	Designed by awren	Desipago
File	Checked by	Drainage
Innovvze	Source Control 2020.1	

Cascade Model Details for W461 - Basin 1B.SRCX

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 24.0 1.200 184.0 1.500 235.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0136-9400-1350-9400 Design Head (m) 1.350 Design Flow (1/s) 9.4 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 136 0.000 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.350	9.4	Kick-Flo®	0.852	7.6
	Flush-Flo™	0.398	9.4	Mean Flow over Head Range	_	8.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) I	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	4.9	1.200	8.9	3.000	13.7	7.000	20.6
0.200	8.7	1.400	9.6	3.500	14.8	7.500	21.2
0.300	9.3	1.600	10.2	4.000	15.7	8.000	21.9
0.400	9.4	1.800	10.8	4.500	16.6	8.500	22.6
0.500	9.3	2.000	11.3	5.000	17.5	9.000	23.2
0.600	9.1	2.200	11.8	5.500	18.3	9.500	23.8
0.800	8.1	2.400	12.3	6.000	19.1		
1.000	8.2	2.600	12.8	6.500	19.8		

Ardent		Page 1
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micro
Date 12/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovyze	Source Control 2020.1	•

Cascade Summary of Results for W461 - Basin 2A.SRCX

Upstream	Outflow To	Overflow To
Structures		

(None) W461 - Basin 2B.SRCX (None)

	Storm Event		Max Level	-	Max Control		Status
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	58.309	0.859	179.8	680.7	ОК
30	min	Summer	58.485	1.035	179.8	854.7	O K
60	min	Summer	58.570	1.120	179.8	943.1	O K
120	min	Summer	58.559	1.109	179.8	931.5	O K
180	min	Summer	58.495	1.045	179.8	865.2	O K
240	min	Summer	58.411	0.961	179.8	780.0	O K
360	min	Summer	58.249	0.799	179.8	624.2	O K
480	min	Summer	58.115	0.665	179.7	503.8	O K
600	min	Summer	58.013	0.563	177.9	416.3	O K
720	min	Summer	57.940	0.490	174.6	355.5	O K
960	min	Summer	57.867	0.417	154.7	297.2	O K
1440	min	Summer	57.794	0.344	117.5	241.1	O K
2160	min	Summer	57.736	0.286	87.2	197.6	O K
2880	min	Summer	57.702	0.252	70.0	172.2	O K
4320	min	Summer	57.660	0.210	50.9	142.3	O K
5760	min	Summer	57.635	0.185	40.2	124.4	ОК

	Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			143.957	0.0	827.6	22
30	min	Summer	94.236	0.0	1084.6	34
60	min	Summer	58.739	0.0	1355.0	54
120	min	Summer	35.368	0.0	1632.1	88
180	min	Summer	25.936	0.0	1795.5	122
240	min	Summer	20.691	0.0	1909.9	156
360	min	Summer	15.003	0.0	2077.4	218
480	min	Summer	11.944	0.0	2205.0	276
600	min	Summer	10.000	0.0	2307.7	332
720	min	Summer	8.645	0.0	2394.0	388
960	min	Summer	6.865	0.0	2534.8	502
1440	min	Summer	4.954	0.0	2743.1	742
2160	min	Summer	3.569	0.0	2966.6	1104
2880	min	Summer	2.825	0.0	3131.1	1472
4320	min	Summer	2.030	0.0	3373.0	2204
5760	min	Summer	1.604	0.0	3556.3	2936

Ardent		Page 2
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

Cascade Summary of Results for W461 - Basin 2A.SRCX

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
			(111)	(111)	(1/5)	(111)	
7200	min	Summer	57.618	0.168	33.6	112.3	ОК
8640	min	Summer	57.605	0.155	28.9	103.3	O K
10080	min	Summer	57.595	0.145	25.5	96.4	O K
15	min	Winter	58.405	0.955	179.8	774.2	O K
30	min	Winter	58.598	1.148	179.8	972.7	O K
60	min	Winter	58.690	1.240	182.9	1073.6	Flood Risk
120	min	Winter	58.658	1.208	180.6	1037.5	Flood Risk
180	min	Winter	58.563	1.113	179.8	935.5	O K
240	min	Winter	58.438	0.988	179.8	807.5	O K
360	min	Winter	58.189	0.739	179.8	569.7	O K
480	min	Winter	58.006	0.556	177.6	409.8	O K
600	min	Winter	57.902	0.452	170.4	324.7	O K
720	min	Winter	57.858	0.408	150.4	290.1	O K
960	min	Winter	57.802	0.352	121.5	247.0	O K
1440	min	Winter	57.739	0.289	88.8	200.1	O K
2160	min	Winter	57.690	0.240	64.5	163.9	O K
2880	min	Winter	57.661	0.211	51.1	143.0	O K
4320	min	Winter	57.626	0.176	36.9	118.4	O K
5760	min	Winter	57.605	0.155	29.1	103.8	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Summer	1.336	0.0	3700.9	3664
8640	min	Summer	1.149	0.0	3821.9	4376
10080	min	Summer	1.012	0.0	3925.2	5136
15	min	Winter	143.957	0.0	927.3	23
30	min	Winter	94.236	0.0	1215.1	34
60	min	Winter	58.739	0.0	1517.8	58
120	min	Winter	35.368	0.0	1828.1	94
180	min	Winter	25.936	0.0	2011.1	132
240	min	Winter	20.691	0.0	2139.3	168
360	min	Winter	15.003	0.0	2327.0	228
480	min	Winter	11.944	0.0	2469.9	282
600	min	Winter	10.000	0.0	2584.9	328
720	min	Winter	8.645	0.0	2681.6	386
960	min	Winter	6.865	0.0	2839.4	508
1440	min	Winter	4.954	0.0	3072.7	748
2160	min	Winter	3.569	0.0	3322.8	1108
2880	min	Winter	2.825	0.0	3507.1	1472
4320	min	Winter	2.030	0.0	3778.3	2204
5760	min	Winter	1.604	0.0	3983.2	2936
		©2	1982-20	20 Inno	vyze	

Ardent		Page 3
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Degingo
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

Cascade Summary of Results for W461 - Basin 2A.SRCX

Storm		Rain	Flooded	Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
7200	min Winter	1.336	0.0	4145.2	3672	
8640	min Winter	1.149	0.0	4280.8	4352	
10080	min Winter	1.012	0.0	4396.9	5136	

Ardent		Page 4
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovyze	Source Control 2020.1	

Cascade Rainfall Details for W461 - Basin 2A.SRCX

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.407 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +45

Time Area Diagram

Total Area (ha) 3.080

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	1.027	4	8	1.027	8	12	1.027

Ardent		Page 5
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Designation
File W461 - Catchment 2 Casca	Checked by BB	Drainage
Innovyze	Source Control 2020.1	

Cascade Model Details for W461 - Basin 2A.SRCX

Storage is Online Cover Level (m) 58.950

Tank or Pond Structure

Invert Level (m) 57.450

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 643.0 1.200 1092.0 1.500 1216.0

Hydro-Brake® Optimum Outflow Control

MD-SHE-0502-1800-1200-1800 Unit Reference Design Head (m) 1.200 Design Flow (1/s) 180.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 502 Invert Level (m) 57.450

Minimum Outlet Pipe Diameter (mm) Site Specific Design (Contact Hydro International) Suggested Manhole Diameter (mm) Site Specific Design (Contact Hydro International)

Control	Points	Head	(m) Fl	low (1	/s)	Con	trol	Points	Head	(m)	Flow	(1/s)
Design Point	(Calculated)	1.2	200	18	0.0			Kick-Flo®	1.	029		167.0
	Flush-Flo™	0.6	585	17	9.8	Mean Flow	ove	r Head Range		_		135.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) F	flow (1/s)	Depth (m) E	flow (1/s)	Depth (m)	Flow (1/s)
0.100	12.6	1.200	180.0	3.000	281.8	7.000	427.3
0.200	46.5	1.400	194.1	3.500	303.9	7.500	442.1
0.300	94.3	1.600	207.1	4.000	324.5	8.000	456.4
0.400	146.6	1.800	219.4	4.500	343.8	8.500	470.2
0.500	175.2	2.000	231.0	5.000	362.1	9.000	483.6
0.600	178.9	2.200	242.1	5.500	379.5	9.500	496.7
0.800	178.3	2.400	252.6	6.000	396.1		
1.000	169.3	2.600	262.7	6.500	412.0		

Ardent		Page 1
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Desipago
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

Cascade Summary of Results for W461 - Basin 2B.SRCX

Upstream Outflow To Overflow To Structures

W461 - Basin 2A.SRCX W461 - Basin 2C.SRCX (None) W461 - Basin 4.SRCX

	Storm		Max	Max	Max	Max	Status
	Ever	nt	Level	Depth	${\tt Control}$	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	52.959	0.459	20.0	643.1	ОК
30	min	Summer	53.108	0.608	20.0	874.3	O K
60	min	Summer	53.257	0.757	20.0	1119.1	O K
120	min	Summer	53.404	0.904	20.0	1372.8	O K
180	min	Summer	53.484	0.984	20.0	1516.4	O K
240	min	Summer	53.537	1.037	20.0	1614.0	O K
360	min	Summer	53.592	1.092	20.0	1715.9	O K
480	min	Summer	53.613	1.113	20.0	1756.7	O K
600	min	Summer	53.619	1.119	20.0	1768.3	O K
720	min	Summer	53.616	1.116	20.0	1762.5	O K
960	min	Summer	53.598	1.098	20.0	1727.5	O K
1440	min	Summer	53.555	1.055	20.0	1646.8	O K
2160	min	Summer	53.485	0.985	20.0	1519.6	O K
2880	min	Summer	53.415	0.915	20.0	1392.9	O K
4320	min	Summer	53.259	0.759	20.0	1122.4	O K
5760	min	Summer	53.115	0.615	20.0	886.3	O K

	Storm Event		Rain (mm/hr)	Volume	Discharge Volume	Time-Peak (mins)
				(m³)	(m³)	
15	min	Summer	143.957	0.0	852.2	120
30	min	Summer	94.236	0.0	1100.6	152
60	min	Summer	58.739	0.0	1474.5	190
120	min	Summer	35.368	0.0	1756.1	238
180	min	Summer	25.936	0.0	1923.8	270
240	min	Summer	20.691	0.0	2040.6	302
360	min	Summer	15.003	0.0	2210.1	392
480	min	Summer	11.944	0.0	2337.2	502
600	min	Summer	10.000	0.0	2437.6	614
720	min	Summer	8.645	0.0	2520.0	728
960	min	Summer	6.865	0.0	2647.0	864
1440	min	Summer	4.954	0.0	2775.7	1118
2160	min	Summer	3.569	0.0	3285.1	1524
2880	min	Summer	2.825	0.0	3447.2	1940
4320	min	Summer	2.030	0.0	3670.8	2728
5760	min	Summer	1.604	0.0	4106.2	3456

Ardent		Page 2
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovyze	Source Control 2020.1	

Cascade Summary of Results for W461 - Basin 2B.SRCX

Storm Event		Max Level	Max Depth	Max Control	Max Volume	Status	
			(m)	(m)	(1/s)	(m³)	
7200	min	Summer	52.994	0.494	20.0	696.2	O K
8640	min	Summer	52.896	0.396	20.0	548.2	O K
10080	min	Summer	52.822	0.322	19.9	439.4	O K
15	min	Winter	53.018	0.518	20.0	732.8	O K
30	min	Winter	53.181	0.681	20.0	992.8	O K
60	min	Winter	53.346	0.846	20.0	1272.1	O K
120	min	Winter	53.502	1.002	20.0	1549.6	O K
180	min	Winter	53.588	1.088	20.0	1709.1	O K
240	min	Winter	53.647	1.147	20.0	1820.3	O K
360	min	Winter	53.714	1.214	20.1	1949.4	Flood Risk
480	min	Winter	53.740	1.240	20.3	2002.3	Flood Risk
600	min	Winter	53.751	1.251	20.4	2022.8	Flood Risk
720	min	Winter	53.751	1.251	20.4	2024.0	Flood Risk
960	min	Winter	53.735	1.235	20.3	1991.6	Flood Risk
1440	min	Winter	53.680	1.180	20.0	1885.0	O K
2160	min	Winter	53.591	1.091	20.0	1715.4	O K
2880	min	Winter	53.494	0.994	20.0	1535.8	O K
4320	min	Winter	53.267	0.767	20.0	1137.1	O K
5760	min	Winter	53.047	0.547	20.0	778.8	O K

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
7200	min	Summer	1.336	0.0	4265.5	4144
8640	min	Summer	1.149	0.0	4382.6	4824
10080	min	Summer	1.012	0.0	4452.2	5472
15	min	Winter	143.957	0.0	948.5	130
30	min	Winter	94.236	0.0	1226.3	164
60	min	Winter	58.739	0.0	1639.7	206
120	min	Winter	35.368	0.0	1958.2	248
180	min	Winter	25.936	0.0	2145.2	282
240	min	Winter	20.691	0.0	2274.9	312
360	min	Winter	15.003	0.0	2462.3	390
480	min	Winter	11.944	0.0	2601.6	498
600	min	Winter	10.000	0.0	2709.9	608
720	min	Winter	8.645	0.0	2796.3	718
960	min	Winter	6.865	0.0	2916.1	932
1440	min	Winter	4.954	0.0	2901.6	1176
2160	min	Winter	3.569	0.0	3657.9	1636
2880	min	Winter	2.825	0.0	3838.5	2096
4320	min	Winter	2.030	0.0	4090.6	2948
5760	min	Winter	1.604	0.0	4594.1	3640
		©	1982-20	20 Inno	vyze	

Ardent		Page 3
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Desipago
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovvze	Source Control 2020.1	•

Cascade Summary of Results for W461 - Basin 2B.SRCX

Storm Event	Max Level (m)	-	Max Control (1/s)		Status
7200 min Winter 8640 min Winter 10080 min Winter	52.767	0.267	19.6	521.6 360.6 276.0	0 K 0 K 0 K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Event	(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
7200	min Winter	1.336	0.0	4762.4	4264	
8640	min Winter	1.149	0.0	4874.5	4848	
10080	min Winter	1.012	0.0	4961.1	5312	

Ardent		Page 4
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Desipago
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

Cascade Rainfall Details for W461 - Basin 2B.SRCX

 Return
 Reprint (years)
 FSR
 Winter Storms
 Yes

 Region
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.407
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +45

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area
From: To: (ha)

0 4 0.000

Ardent		Page 5
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Desipago
File W461 - Catchment 2 Casca	Checked by BB	Drainage
Innovyze	Source Control 2020.1	

Cascade Model Details for W461 - Basin 2B.SRCX

Storage is Online Cover Level (m) 54.000

Tank or Pond Structure

Invert Level (m) 52.500

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 1283.0 1.200 1945.0 1.500 2123.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0196-2000-1200-2000 Design Head (m) 1.200 Design Flow (1/s) 20.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 196 52.500 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.200	20.0	Kick-Flo®	0.827	16.8
	Flush-Flo™	0.376	20.0	Mean Flow over Head Range	_	17.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)						
0.100	6.8	1.200	20.0	3.000	31.0	7.000	46.7
0.200	18.3	1.400	21.5	3.500	33.4	7.500	48.2
0.300	19.8	1.600	22.9	4.000	35.6	8.000	49.8
0.400	20.0	1.800	24.3	4.500	37.7	8.500	51.3
0.500	19.7	2.000	25.5	5.000	39.6	9.000	52.7
0.600	19.4	2.200	26.7	5.500	41.5	9.500	54.1
0.800	17.4	2.400	27.8	6.000	43.3		
1.000	18.3	2.600	28.9	6.500	45.0		

Ardent		Page 1
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micro
Date 12/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovvze	Source Control 2020.1	•

Cascade Summary of Results for W461 - Basin 2C.SRCX

Upstream Outflow To Overflow To Structures

W461 - Basin 2B.SRCX (None) (None) W461 - Basin 2A.SRCX W461 - Basin 4.SRCX

	Sto	cm	Max	Max	Max	Max	Status
	Event		Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	52.332	0.282	4.1	604.6	ОК
30	min	Summer	52.427	0.377	4.2	820.3	O K
60	min	Summer	52.524	0.474	4.2	1046.5	O K
120	min	Summer	52.621	0.571	4.2	1278.6	O K
180	min	Summer	52.678	0.628	4.2	1419.0	O K
240	min	Summer	52.719	0.669	4.2	1519.6	O K
360	min	Summer	52.779	0.729	4.2	1671.1	O K
480	min	Summer	52.824	0.774	4.2	1786.2	O K
600	min	Summer	52.859	0.809	4.2	1876.5	O K
720	min	Summer	52.888	0.838	4.2	1951.9	O K
960	min	Summer	52.934	0.884	4.2	2074.0	O K
1440	min	Summer	52.989	0.939	4.2	2220.6	O K
2160	min	Summer	53.065	1.015	4.2	2426.4	O K
2880	min	Summer	53.109	1.059	4.2	2548.6	O K
4320	min	Summer	53.165	1.115	4.2	2703.4	O K

	Stor		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	143.957	0.0	311.5	856
30	min	Summer	94.236	0.0	312.1	1090
60	min	Summer	58.739	0.0	666.0	1366
120	min	Summer	35.368	0.0	649.3	1690
180	min	Summer	25.936	0.0	635.7	1882
240	min	Summer	20.691	0.0	623.0	2018
360	min	Summer	15.003	0.0	599.2	2234
480	min	Summer	11.944	0.0	589.3	2384
600	min	Summer	10.000	0.0	587.1	2504
720	min	Summer	8.645	0.0	583.8	2610
960	min	Summer	6.865	0.0	575.3	2792
1440	min	Summer	4.954	0.0	554.7	2880
2160	min	Summer	3.569	0.0	1178.9	3532
2880	min	Summer	2.825	0.0	1162.2	3912
4320	min	Summer	2.030	0.0	1114.5	4604

Ardent		Page 2
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovyze	Source Control 2020.1	

Cascade Summary of Results for W461 - Basin 2C.SRCX

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)		Status
5760	min	Summer	53.161	1.111	4.2	2692.4	O K
7200	min	Summer	53.140	1.090	4.2	2633.3	O K
8640	min	Summer	53.116	1.066	4.2	2565.9	O K
10080	min	Summer	53.093	1.043	4.2	2502.5	O K
15	min	Winter	52.369	0.319	4.2	687.8	O K
30	min	Winter	52.474	0.424	4.2	930.3	O K
60	min	Winter	52.581	0.531	4.2	1182.1	O K
120	min	Winter	52.689	0.639	4.2	1446.9	O K
180	min	Winter	52.755	0.705	4.2	1609.8	O K
240	min	Winter	52.801	0.751	4.2	1727.6	O K
360	min	Winter	52.866	0.816	4.2	1894.5	O K
480	min	Winter	52.914	0.864	4.2	2020.7	O K
600	min	Winter	52.952	0.902	4.2	2121.6	O K
720	min	Winter	52.984	0.934	4.2	2206.0	O K
960	min	Winter	53.032	0.982	4.2	2334.6	O K
1440	min	Winter	53.034	0.984	4.2	2340.9	O K
2160	min	Winter	53.178	1.128	4.2	2740.2	O K
2880	min	Winter	53.226	1.176	4.2	2878.0	O K
4320	min	Winter	53.296	1.246	4.3	3077.2	Flood Risk

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
5760	min	Summer	1.604	0.0	2352.9	5880
7200	min	Summer	1.336	0.0	2314.5	7192
8640	min	Summer	1.149	0.0	2257.1	7792
10080	min	Summer	1.012	0.0	2183.8	8536
15	min	Winter	143.957	0.0	313.3	941
30	min	Winter	94.236	0.0	311.3	1215
60	min	Winter	58.739	0.0	659.3	1548
120	min	Winter	35.368	0.0	638.4	1894
180	min	Winter	25.936	0.0	618.1	2104
240	min	Winter	20.691	0.0	601.0	2256
360	min	Winter	15.003	0.0	600.8	2440
480	min	Winter	11.944	0.0	599.0	2586
600	min	Winter	10.000	0.0	595.6	2712
720	min	Winter	8.645	0.0	591.4	2822
960	min	Winter	6.865	0.0	581.3	2880
1440	min	Winter	4.954	0.0	559.7	2880
2160	min	Winter	3.569	0.0	1217.3	3756
2880	min	Winter	2.825	0.0	1198.0	4148
4320	min	Winter	2.030	0.0	1150.3	4728
		©	1982-20	20 Inno	vyze	

Ardent		Page 3
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Degingo
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

Cascade Summary of Results for W461 - Basin 2C.SRCX

	Storm Event		Max Level (m)	-	Max Control (1/s)		Status
5760	min	Winter	53.306	1.256	4.3	3107.4	Flood Risk
7200	min	Winter	53.289	1.239	4.3	3057.2	Flood Risk
8640	min	Winter	53.264	1.214	4.2	2985.8	Flood Risk
10080	min	Winter	53.236	1.186	4.2	2903.9	O K

Storm		Rain Flooded		Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
	5760 min Winter	1.604	0.0	2475.8	5800	
	7200 min Winter	1.336	0.0	2437.3	7112	
	8640 min Winter	1.149	0.0	2379.5	8360	
	10080 min Winter	1.012	0.0	2306.2	9472	

Ardent		Page 4
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micro
Date 12/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Diamage
Innovyze	Source Control 2020.1	

Cascade Rainfall Details for W461 - Basin 2C.SRCX

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840

M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.407 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +45

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area
From: To: (ha)

0 4 0.000

Ardent		Page 5
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Designation
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

Cascade Model Details for W461 - Basin 2C.SRCX

Storage is Online Cover Level (m) 53.550

Tank or Pond Structure

Invert Level (m) 52.050

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 2056.0 1.200 2876.0 1.500 3093.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0094-4200-1200-4200 Design Head (m) 1.200 Design Flow (1/s) 4.2 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 94 52.050 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.200	4.2	Kick-Flo®	0.742	3.4
	Flush-Flo™	0.358	4.2	Mean Flow over Head Range	_	3.7

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) F	low (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	3.0	1.200	4.2	3.000	6.4	7.000	9.6
0.200	3.9	1.400	4.5	3.500	6.9	7.500	9.9
0.300	4.2	1.600	4.8	4.000	7.4	8.000	10.2
0.400	4.2	1.800	5.1	4.500	7.8	8.500	10.5
0.500	4.1	2.000	5.3	5.000	8.2	9.000	10.8
0.600	3.9	2.200	5.6	5.500	8.6	9.500	11.1
0.800	3.5	2.400	5.8	6.000	8.9		
1.000	3.9	2.600	6.0	6.500	9.3		

Ardent		Page 1
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1: 100 yr + 40% CC	
London, EC3M 5JE	Basin 4	Micro
Date 13/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovyze	Source Control 2020.1	•

Upstream Outflow To Overflow To Structures

(None) W461 - Basin 2B.SRCX (None)

	Stor		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	0 537	0 537	1.0	131.1	ОК
		Summer			1.0		
		Summer					
120		Summer			1.1		
		Summer			1.2		
240	mın	Summer	0.983	0.983	1.2	289.8	O K
360	min	Summer	1.029	1.029	1.2	309.1	O K
480	min	Summer	1.059	1.059	1.2	322.1	O K
600	min	Summer	1.080	1.080	1.2	330.9	O K
720	min	Summer	1.094	1.094	1.2	337.2	ОК
960	min	Summer	1.111	1.111	1.3	344.7	ОК
1440	min	Summer	1.118	1.118	1.3	348.2	ОК
2160	min	Summer	1.100	1.100	1.2	339.9	ОК
2880	min	Summer	1.075	1.075	1.2	328.9	ОК
		Summer			1.2	308.4	ОК
5760	min	Summer	0.984	0.984	1.2		ОК

	Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	143.957	0.0	81.2	27
30	min	Summer	94.236	0.0	79.1	42
60	min	Summer	58.739	0.0	166.8	72
120	min	Summer	35.368	0.0	170.4	130
180	min	Summer	25.936	0.0	175.5	190
240	min	Summer	20.691	0.0	179.8	250
360	min	Summer	15.003	0.0	185.2	370
480	min	Summer	11.944	0.0	188.4	488
600	min	Summer	10.000	0.0	190.5	608
720	min	Summer	8.645	0.0	191.7	726
960	min	Summer	6.865	0.0	192.8	966
1440	min	Summer	4.954	0.0	191.5	1442
2160	min	Summer	3.569	0.0	362.7	2060
2880	min	Summer	2.825	0.0	362.2	2392
4320	min	Summer	2.030	0.0	348.6	3120
5760	min	Summer	1.604	0.0	565.1	3936

Ardent		Page 2
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1: 100 yr + 40% CC	
London, EC3M 5JE	Basin 4	Micco
Date 13/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)		Status
7200	min	Summer	0.945	0.945	1.2	274.2	ОК
8640	min	Summer	0.907	0.907	1.1	259.1	0 K
10080	min	Summer	0.870	0.870	1.1	244.9	0 K
15	min	Winter	0.588	0.588	1.0	146.9	ОК
30	min	Winter	0.725	0.725	1.0	192.0	O K
60	min	Winter	0.852	0.852	1.1	238.1	O K
120	min	Winter	0.969	0.969	1.2	284.0	O K
180	min	Winter	1.030	1.030	1.2	309.6	O K
240	min	Winter	1.069	1.069	1.2	326.3	O K
360	min	Winter	1.120	1.120	1.3	348.9	O K
480	min	Winter	1.154	1.154	1.3	364.2	O K
600	min	Winter	1.177	1.177	1.3	375.1	O K
720	min	Winter	1.194	1.194	1.3	383.0	O K
960	min	Winter	1.215	1.215	1.3	393.2	Flood Risk
1440	min	Winter	1.231	1.231	1.3	400.8	Flood Risk
2160	min	Winter	1.223	1.223	1.3	396.9	Flood Risk
2880	min	Winter	1.198	1.198	1.3	384.8	O K
4320	min	Winter	1.143	1.143	1.3	359.2	O K
5760	min	Winter	1.089	1.089	1.2	335.1	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
7200	min	Summer	1.336	0.0	587.5	4760
8640	min	Summer	1.149	0.0	602.0	5616
10080	min	Summer	1.012	0.0	575.6	6448
15	min	Winter	143.957	0.0	79.6	27
30	min	Winter	94.236	0.0	81.8	41
60	min	Winter	58.739	0.0	168.6	70
120	min	Winter	35.368	0.0	177.5	128
180	min	Winter	25.936	0.0	184.4	188
240	min	Winter	20.691	0.0	188.6	246
360	min	Winter	15.003	0.0	193.7	364
480	min	Winter	11.944	0.0	196.8	480
600	min	Winter	10.000	0.0	198.6	598
720	min	Winter	8.645	0.0	199.6	714
960	min	Winter	6.865	0.0	200.2	948
1440	min	Winter	4.954	0.0	198.0	1404
2160	min	Winter	3.569	0.0	381.5	2072
2880	min	Winter	2.825	0.0	379.7	2684
4320	min	Winter	2.030	0.0	365.1	3332
5760	min	Winter	1.604	0.0	632.4	4264
		©	1982-20	20 Inno	vyze	

Ardent		Page 3
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1: 100 yr + 40% CC	
London, EC3M 5JE	Basin 4	Micco
Date 13/05/2022	Designed by AW	Desinado
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovyze	Source Control 2020.1	

Storm Event	Max Level (m)	-	Max Control (1/s)	Volume	Status
7200 min Winter 8640 min Winter 10080 min Winter	1.036 0.985	1.036 0.985	1.2	312.2 290.5 269.7	0 K 0 K 0 K

Storm		Rain	Flooded	Discharge	Time-Peak	
Event		(mm/hr) Volume		Volume	(mins)	
			(m³)	(m³)		
7200	min Winter	1.336	0.0	655.1	5184	
8640	min Winter	1.149	0.0	640.3	6056	
10080	min Winter	1.012	0.0	610.3	6960	

Ardent		Page 4
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1: 100 yr + 40% CC	
London, EC3M 5JE	Basin 4	Micco
Date 13/05/2022	Designed by AW	Designado
File W461 - Catchment 2 Casca	Checked by BB	Drainage
Innovyze	Source Control 2020.1	

Cascade Rainfall Details for W461 - Basin 4.SRCX

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.407 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +45

Time Area Diagram

Total Area (ha) 0.490

							(mins)	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.163	4	8	0.163	8	12	0.163

Ardent		Page 5
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1: 100 yr + 40% CC	
London, EC3M 5JE	Basin 4	Micco
Date 13/05/2022	Designed by AW	Designation
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

Cascade Model Details for W461 - Basin 4.SRCX

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 191.0 1.200 473.0 1.500 556.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0051-1300-1200-1300 Design Head (m) 1.200 Design Flow (1/s) 1.3 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 51 0.000 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m) I	?low (1/s)
Design Point	(Calculated)	1.200	1.3	Kick-Flo®	0.459	0.8
	Flush-Flo™	0.227	1.0	Mean Flow over Head Range	_	1.0

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Fl	ow (1/s)	Depth (m)	Flow (1/s)	Depth (m) F	low (1/s)	Depth (m)	Flow (1/s)
0.100	0.9	1.200	1.3	3.000	2.0	7.000	2.9
0.200	1.0	1.400	1.4	3.500	2.1	7.500	3.0
0.300	1.0	1.600	1.5	4.000	2.2	8.000	3.1
0.400	1.0	1.800	1.6	4.500	2.4	8.500	3.2
0.500	0.9	2.000	1.6	5.000	2.5	9.000	3.3
0.600	1.0	2.200	1.7	5.500	2.6	9.500	3.4
0.800	1.1	2.400	1.8	6.000	2.7		
1.000	1.2	2.600	1.8	6.500	2.8		

Ardent		Page 1
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 16:17	Designed by awren	Desipago
File	Checked by	Dialilade
Innovvze	Source Control 2020.1	1

Upstream Outflow To Overflow To Structures

(None) W461 - Basin 1B.SRCX (None)

	Stor		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	0.708	0.708	9.3	46.3	ОК
30	min	Summer	0.801	0.801	9.3	57.8	ОК
60	min	Summer	0.843	0.843	9.3	63.5	ОК
120	min	Summer	0.825	0.825	9.3	61.1	ОК
180	min	Summer	0.794	0.794	9.3	56.9	ОК
240	min	Summer	0.756	0.756	9.3	52.0	ОК
360	min	Summer	0.670	0.670	9.3	42.1	ОК
480	min	Summer	0.585	0.585	9.3	33.3	ОК
600	min	Summer	0.501	0.501	9.3	25.9	O K
720	min	Summer	0.422	0.422	9.3	19.8	O K
960	min	Summer	0.291	0.291	9.3	11.5	O K
1440	min	Summer	0.157	0.157	8.4	5.2	O K
2160	min	Summer	0.117	0.117	6.2	3.6	O K
2880	min	Summer	0.100	0.100	5.0	3.0	O K
4320	min	Summer	0.081	0.081	3.6	2.4	O K
5760	min	Summer	0.071	0.071	2.9	2.1	ОК

	Sto	cm	Rain	${\tt Flooded}$	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	110.898	0.0	56.1	23
30	min	Summer	71.990	0.0	72.9	36
60	min	Summer	44.676	0.0	90.5	62
120	min	Summer	26.913	0.0	109.0	98
180	min	Summer	19.798	0.0	120.3	132
240	min	Summer	15.855	0.0	128.4	164
360	min	Summer	11.566	0.0	140.5	228
480	min	Summer	9.243	0.0	149.7	290
600	min	Summer	7.763	0.0	157.2	350
720	min	Summer	6.729	0.0	163.5	406
960	min	Summer	5.368	0.0	173.9	518
1440	min	Summer	3.899	0.0	189.5	738
2160	min	Summer	2.829	0.0	206.2	1100
2880	min	Summer	2.252	0.0	218.9	1456
4320	min	Summer	1.631	0.0	237.8	2200
5760	min	Summer	1.296	0.0	252.0	2936

Ardent		Page 2
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 16:17	Designed by awren	Desipago
File	Checked by	Dialilade
Innovyze	Source Control 2020.1	

	Stor Even		Max Level	Max Depth	Max Control	Max Volume	Status
			(m)	(m)	(1/s)	(m³)	
7200	min	Summer	0.064	0.064	2.4	1.8	O K
8640	min	Summer	0.059	0.059	2.1	1.7	O K
10080	min	Summer	0.055	0.055	1.8	1.6	O K
15	min	Winter	0.764	0.764	9.3	53.0	O K
30	min	Winter	0.863	0.863	9.3	66.3	O K
60	min	Winter	0.913	0.913	9.3	73.8	O K
120	min	Winter	0.896	0.896	9.3	71.2	O K
180	min	Winter	0.857	0.857	9.3	65.4	O K
240	min	Winter	0.807	0.807	9.3	58.5	O K
360	min	Winter	0.675	0.675	9.3	42.6	O K
480	min	Winter	0.538	0.538	9.3	29.0	O K
600	min	Winter	0.404	0.404	9.3	18.5	O K
720	min	Winter	0.288	0.288	9.3	11.4	O K
960	min	Winter	0.158	0.158	8.4	5.2	O K
1440	min	Winter	0.117	0.117	6.2	3.6	O K
2160	min	Winter	0.094	0.094	4.5	2.8	O K
2880	min	Winter	0.081	0.081	3.6	2.4	O K
4320	min	Winter	0.067	0.067	2.6	1.9	O K
5760	min	Winter	0.059	0.059	2.1	1.7	O K

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
7200	min	Summer	1.085	0.0	263.6	3624
8640	min	Summer	0.937	0.0	273.3	4384
10080	min	Summer	0.828	0.0	281.8	5056
15	min	Winter	110.898	0.0	62.9	24
30	min	Winter	71.990	0.0	81.6	36
60	min	Winter	44.676	0.0	101.3	62
120	min	Winter	26.913	0.0	122.1	104
180	min	Winter	19.798	0.0	134.7	140
240	min	Winter	15.855	0.0	143.8	180
360	min	Winter	11.566	0.0	157.4	246
480	min	Winter	9.243	0.0	167.7	308
600	min	Winter	7.763	0.0	176.1	362
720	min	Winter	6.729	0.0	183.1	410
960	min	Winter	5.368	0.0	194.8	502
1440	min	Winter	3.899	0.0	212.2	736
2160	min	Winter	2.829	0.0	231.0	1088
2880	min	Winter	2.252	0.0	245.1	1432
4320	min	Winter	1.631	0.0	266.3	2176
5760	min	Winter	1.296	0.0	282.3	2928
		©	1982-20	20 Inno	vyze	

Ardent		Page 3
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 16:17	Designed by awren	Desipago
File	Checked by	Diali laye
Innovyze	Source Control 2020.1	•

Storm Event		Max Level (m)	-	Max Control (1/s)		Status	
7200	min	Winter	0.054	0.054	1.7	1.5	O K
8640	min	Winter	0.050	0.050	1.5	1.4	O K
10080	min	Winter	0.046	0.046	1.3	1.3	ОК

Storm		Rain	Flooded	Flooded Discharge							
Event		Event		Event		Event		(mm/hr)	Volume	Volume	(mins)
					(m³)	(m³)					
	7200	min	Winter	1.085	0.0	295.2	3584				
	8640	min	Winter	0.937	0.0	306.1	4304				
	10080	min	Winter	0.828	0.0	315.7	5136				

Ardent		Page 4
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 16:17	Designed by awren	Desipago
File	Checked by	Dialilade
Innovyze	Source Control 2020.1	

Cascade Rainfall Details for W461 - Basin 1A.SRCX

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.407 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +45

Time Area Diagram

Total Area (ha) 0.270

	(mins)								
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)	
0	4	0.090	4	8	0.090	8	12	0.090	

Ardent		Page 5
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 16:17	Designed by awren	Desipago
File	Checked by	Dialilade
Innovvze	Source Control 2020.1	•

Cascade Model Details for W461 - Basin 1A.SRCX

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 26.0 1.200 215.0 1.500 278.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0139-9400-1200-9400 Design Head (m) 1.200 Design Flow (1/s) 9.4 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes 139 Diameter (mm) 0.000 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.200	9.4	Kick-Flo®	0.769	7.6
	Flush-Flo™	0.355	9.3	Mean Flow over Head Range	_	8.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) I	Flow (1/s)	Depth (m) Flo	ow (1/s)	Depth (m) F	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	5.0	1.200	9.4	3.000	14.5	7.000	21.7
0.200	8.8	1.400	10.1	3.500	15.6	7.500	22.5
0.300	9.3	1.600	10.8	4.000	16.6	8.000	23.2
0.400	9.3	1.800	11.4	4.500	17.6	8.500	23.9
0.500	9.2	2.000	12.0	5.000	18.5	9.000	24.5
0.600	8.9	2.200	12.5	5.500	19.4	9.500	25.2
0.800	7.8	2.400	13.0	6.000	20.2		
1.000	8.6	2.600	13.5	6.500	21.0		

Ardent		Page 1
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 16:18	Designed by awren	Desipago
File	Checked by	Diali laye
Innovvze	Source Control 2020.1	•

Upstream Outflow To Overflow To Structures

W461 - Basin 1A.SRCX (None) (None)

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)		Status
15	min	Summer	0.211	0.211	8.8	6.8	ОК
		Summer				6.8	
		Summer				6.8	
		Summer					
180	min	Summer	0.212	0.212			ОК
240	min	Summer	0.217	0.217	8.8	7.0	ОК
360	min	Summer	0.235	0.235	9.0	7.8	ОК
480	min	Summer	0.244	0.244	9.0	8.2	ОК
600	min	Summer	0.249	0.249	9.0	8.4	ОК
720	min	Summer	0.249	0.249	9.0	8.4	ОК
960	min	Summer	0.226	0.226	8.9	7.4	ОК
1440	min	Summer	0.158	0.158	8.2	4.7	ОК
2160	min	Summer	0.119	0.119	6.2	3.4	ОК
2880	min	Summer	0.101	0.101	5.0	2.8	ОК
4320	min	Summer	0.082	0.082	3.6	2.2	ОК
5760	min	Summer	0.072	0.072	2.9	1.9	ОК

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	110.898	0.0	56.1	98
30	min	Summer	71.990	0.0	72.9	136
60	min	Summer	44.676	0.0	90.4	176
120	min	Summer	26.913	0.0	109.0	224
180	min	Summer	19.798	0.0	120.3	260
240	min	Summer	15.855	0.0	128.4	290
360	min	Summer	11.566	0.0	140.5	338
480	min	Summer	9.243	0.0	149.7	380
600	min	Summer	7.763	0.0	157.2	424
720	min	Summer	6.729	0.0	163.5	470
960	min	Summer	5.368	0.0	173.9	560
1440	min	Summer	3.899	0.0	189.5	750
2160	min	Summer	2.829	0.0	206.2	1104
2880	min	Summer	2.252	0.0	218.8	1460
4320	min	Summer	1.631	0.0	237.8	2164
5760	min	Summer	1.296	0.0	252.0	2936

Ardent		Page 2
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 16:18	Designed by awren	Desipago
File	Checked by	niairiade
Innovyze	Source Control 2020.1	

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
7200	min	Summer	0.065	0.065	2.4	1.7	ОК
8640	min	Summer	0.060	0.060	2.1	1.6	O K
10080	min	Summer	0.056	0.056	1.8	1.4	O K
15	min	Winter	0.212	0.212	8.8	6.8	O K
30	min	Winter	0.212	0.212	8.8	6.8	O K
60	min	Winter	0.212	0.212	8.8	6.8	O K
120	min	Winter	0.212	0.212	8.8	6.8	O K
180	min	Winter	0.212	0.212	8.8	6.8	O K
240	min	Winter	0.212	0.212	8.8	6.9	O K
360	min	Winter	0.237	0.237	9.0	7.9	O K
480	min	Winter	0.255	0.255	9.1	8.7	O K
600	min	Winter	0.259	0.259	9.1	8.9	O K
720	min	Winter	0.237	0.237	9.0	7.9	O K
960	min	Winter	0.165	0.165	8.3	5.0	O K
1440	min	Winter	0.119	0.119	6.2	3.4	O K
2160	min	Winter	0.094	0.094	4.5	2.6	O K
2880	min	Winter	0.082	0.082	3.6	2.2	O K
4320	min	Winter	0.068	0.068	2.6	1.8	O K
5760	min	Winter	0.060	0.060	2.1	1.6	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
7200	min	Summer	1.085	0.0	263.6	3672
8640	min	Summer	0.937	0.0	273.3	4288
10080	min	Summer	0.828	0.0	281.8	5000
15	min	Winter	110.898	0.0	62.9	112
30	min	Winter	71.990	0.0	81.6	154
60	min	Winter	44.676	0.0	101.3	196
120	min	Winter	26.913	0.0	122.1	246
180	min	Winter	19.798	0.0	134.7	284
240	min	Winter	15.855	0.0	143.8	316
360	min	Winter	11.566	0.0	157.4	362
480	min	Winter	9.243	0.0	167.7	390
600	min	Winter	7.763	0.0	176.1	426
720	min	Winter	6.729	0.0	183.1	458
960	min	Winter	5.368	0.0	194.8	522
1440	min	Winter	3.899	0.0	212.2	742
2160	min	Winter	2.829	0.0	231.0	1104
2880	min	Winter	2.252	0.0	245.1	1464
4320	min	Winter	1.631	0.0	266.3	2180
5760	min	Winter	1.296	0.0	282.2	2936
		©:	1982-20	20 Inno	vyze	

Ardent		Page 3
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 16:18	Designed by awren	Desipago
File	Checked by	Diali laye
Innovyze	Source Control 2020.1	•

Storm		Max	Max	Max	Max	Status	
Event		Level	Depth	Control	Volume		
			(m)	(m)	(1/s)	(m³)	
7200	min	Winter	0.054	0.054	1.8	1.4	ОК
8640	min	Winter	0.050	0.050	1.5	1.3	O K
0800	min	Winter	0.047	0.047	1.3	1.2	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
7200 m	in Winter	1.085	0.0	295.2	3656	
8640 m	in Winter	0.937	0.0	306.1	4296	
10080 m	in Winter	0.828	0.0	315.6	5136	

Ardent		Page 4
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 16:18	Designed by awren	Desipago
File	Checked by	Dialilade
Innovyze	Source Control 2020.1	

Cascade Rainfall Details for W461 - Basin 1B.SRCX

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.407 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +45

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area From: To: (ha)

0 4 0.000

Ardent		Page 5
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micco
Date 30/05/2022 16:18	Designed by awren	Desipago
File	Checked by	Dialilade
Innovvze	Source Control 2020.1	•

Cascade Model Details for W461 - Basin 1B.SRCX

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 24.0 1.200 184.0 1.500 235.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0136-9400-1350-9400 Design Head (m) 1.350 Design Flow (1/s) 9.4 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 136 0.000 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.350	9.4	Kick-Flo®	0.852	7.6
	Flush-Flo™	0.398	9.4	Mean Flow over Head Range	_	8.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) I	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	4.9	1.200	8.9	3.000	13.7	7.000	20.6
0.200	8.7	1.400	9.6	3.500	14.8	7.500	21.2
0.300	9.3	1.600	10.2	4.000	15.7	8.000	21.9
0.400	9.4	1.800	10.8	4.500	16.6	8.500	22.6
0.500	9.3	2.000	11.3	5.000	17.5	9.000	23.2
0.600	9.1	2.200	11.8	5.500	18.3	9.500	23.8
0.800	8.1	2.400	12.3	6.000	19.1		
1.000	8.2	2.600	12.8	6.500	19.8		

Ardent		Page 1
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micro
Date 12/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Drainage
Innovvze	Source Control 2020.1	

Upstream	Outflow To	Overflow To
Structures		

(None) W461 - Basin 2B.SRCX (None)

Storm		Max	Max	Max	Max	Status	
	Ever	nt	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	57.835	0.385	139.1	272.4	ОК
30	min	Summer	57.888	0.438	164.3	313.6	ОК
60	min	Summer	57.905	0.455	171.9		ОК
120	min	Summer	57.887	0.437	164.1	313.5	ОК
180	min	Summer	57.858	0.408	150.7	290.5	O K
240	min	Summer	57.832	0.382	137.3	269.9	ОК
360	min	Summer	57.790	0.340	115.4	238.2	O K
480	min	Summer	57.761	0.311	99.9	215.7	ОК
600	min	Summer	57.738	0.288	88.3	199.0	O K
720	min	Summer	57.720	0.270	79.1	185.8	O K
960	min	Summer	57.693	0.243	65.9	166.3	O K
1440	min	Summer	57.659	0.209	50.4	141.7	O K
2160	min	Summer	57.629	0.179	38.0	120.4	O K
2880	min	Summer	57.610	0.160	30.9	107.1	O K
4320	min	Summer	57.587	0.137	22.9	90.8	O K
5760	min	Summer	57.572	0.122	18.4	80.6	ОК

	Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	60.278	0.0	344.4	21
30	min	Summer	38.832	0.0	444.8	29
60	min	Summer	24.003	0.0	552.6	46
120	min	Summer	14.465	0.0	666.4	78
180	min	Summer	10.672	0.0	737.7	108
240	min	Summer	8.577	0.0	790.6	140
360	min	Summer	6.291	0.0	869.9	200
480	min	Summer	5.045	0.0	930.2	262
600	min	Summer	4.250	0.0	979.5	322
720	min	Summer	3.693	0.0	1021.3	382
960	min	Summer	2.957	0.0	1090.5	504
1440	min	Summer	2.161	0.0	1194.9	744
2160	min	Summer	1.578	0.0	1311.2	1108
2880	min	Summer	1.262	0.0	1398.1	1472
4320	min	Summer	0.921	0.0	1528.8	2204
5760	min	Summer	0.736	0.0	1631.8	2936

Ardent		Page 2
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micro
Date 12/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovyze	Source Control 2020.1	

Storm		Max	Max Max Max		Max	Status	
Event		Level Depth Co		${\tt Control}$	Volume		
			(m)	(m)	(1/s)	(m³)	
7200	min	Summer	57.561	0.111	15.5	73.6	ОК
8640	min	Summer	57.553	0.103	13.4	68.3	ОК
10080	min	Summer	57.547	0.097	11.9	64.0	ОК
15	min	Winter	57.872	0.422	157.3	301.4	ОК
30	min	Winter	57.929	0.479	174.0	347.1	O K
60	min	Winter	57.938	0.488	174.5	354.0	O K
120	min	Winter	57.892	0.442	166.3	317.3	O K
180	min	Winter	57.848	0.398	145.5	282.5	O K
240	min	Winter	57.813	0.363	127.5	255.5	O K
360	min	Winter	57.764	0.314	101.5	218.2	O K
480	min	Winter	57.731	0.281	84.4	193.7	O K
600	min	Winter	57.707	0.257	72.7	176.3	O K
720	min	Winter	57.689	0.239	64.0	163.2	O K
960	min	Winter	57.663	0.213	52.0	144.4	O K
1440	min	Winter	57.631	0.181	38.6	121.5	O K
2160	min	Winter	57.603	0.153	28.4	102.3	O K
2880	min	Winter	57.586	0.136	22.8	90.7	O K
4320	min	Winter	57.566	0.116	16.7	76.5	O K
5760	min	Winter	57.553	0.103	13.4	68.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)		
7200	min	Summer	0.619	0.0	1714.0	3672
8640	min	Summer	0.537	0.0	1783.7	4408
10080	min	Summer	0.476	0.0	1843.8	5136
15	min	Winter	60.278	0.0	386.2	21
30	min	Winter	38.832	0.0	498.6	30
60	min	Winter	24.003	0.0	619.2	48
120	min	Winter	14.465	0.0	746.6	80
180	min	Winter	10.672	0.0	826.4	112
240	min	Winter	8.577	0.0	885.7	144
360	min	Winter	6.291	0.0	974.5	206
480	min	Winter	5.045	0.0	1042.1	266
600	min	Winter	4.250	0.0	1097.3	328
720	min	Winter	3.693	0.0	1144.2	388
960	min	Winter	2.957	0.0	1221.7	510
1440	min	Winter	2.161	0.0	1338.7	752
2160	min	Winter	1.578	0.0	1468.8	1112
2880	min	Winter	1.262	0.0	1566.1	1476
4320	min	Winter	0.921	0.0	1712.7	2204
5760 min Winter		0.736	0.0	1827.8	2920	
		©1	L982-20	20 Inno	vyze	

Ardent		Page 3
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Diamage
Innovvze	Source Control 2020.1	•

	Storm Event		Max Level (m)	-	Max Control (1/s)		Status
7200	min	Winter	57.544	0.094	11.2	61.9	ОК
8640	min	Winter	57.538	0.088	9.8	57.5	O K
กกลก	min	Winter	57 532	0 082	8 6	53 0	O K

Storm		Rain	Flooded	Discharge	Time-Peak		
Event		(mm/hr)	Volume	Volume	(mins)		
			(m³)	(m³)			
	7200 min Winte	r 0.619	0.0	1919.8	3600		
	8640 min Winte	r 0.537	0.0	1998.0	4384		
	10080 min Winte	r 0.476	0.0	2065.7	5136		

Ardent		Page 4
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Degingago
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovyze	Source Control 2020.1	

Cascade Rainfall Details for W461 - Basin 2A.SRCX

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	10	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Shortest Storm (mins)	15
Ratio R	0.407	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+0

Time Area Diagram

Total Area (ha) 3.080

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	1.027	4	8	1.027	8	12	1.027

Ardent		Page 5
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Designation
File W461 - Catchment 2 Casca	Checked by BB	Drainage
Innovyze	Source Control 2020.1	

Cascade Model Details for W461 - Basin 2A.SRCX

Storage is Online Cover Level (m) 58.950

Tank or Pond Structure

Invert Level (m) 57.450

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 643.0 1.200 1092.0 1.500 1216.0

Hydro-Brake® Optimum Outflow Control

Unit Reference	MD-SHE-0502-1800-1200-1800
Design Head (m)	1.200
Design Flow $(1/s)$	180.0
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	502
Invert Level (m)	57.450

Minimum Outlet Pipe Diameter (mm) Site Specific Design (Contact Hydro International) Suggested Manhole Diameter (mm) Site Specific Design (Contact Hydro International)

Control	Points	Head	(m) Fl	low (1	/s)	Con	trol	Points	Head	(m)	Flow	(1/s)
Design Point	(Calculated)	1.2	200	18	0.0			Kick-Flo®	1.	029		167.0
	Flush-Flo™	0.6	585	17	9.8	Mean Flow	ove	r Head Range		_		135.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow $(1/s)$	Depth (m) 1	Flow $(1/s)$	Depth (m)	Flow $(1/s)$	Depth (m)	Flow $(1/s)$
0.100	12.6	1.200	180.0	3.000	281.8	7.000	427.3
0.200	46.5	1.400	194.1	3.500	303.9	7.500	442.1
0.300	94.3	1.600	207.1	4.000	324.5	8.000	456.4
0.400	146.6	1.800	219.4	4.500	343.8	8.500	470.2
0.500	175.2	2.000	231.0	5.000	362.1	9.000	483.6
0.600	178.9	2.200	242.1	5.500	379.5	9.500	496.7
0.800	178.3	2.400	252.6	6.000	396.1		
1.000	169.3	2.600	262.7	6.500	412.0		

Ardent		Page 1
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Desipago
File W461 - Catchment 2 Casca	Checked by BB	Drainage
Innovyze	Source Control 2020.1	,

Upstream Outflow To Overflow To Structures

W461 - Basin 2A.SRCX W461 - Basin 2C.SRCX (None) W461 - Basin 4.SRCX

	Sto	rm	Max	Max	Max	Max	Status
	Ever	nt	Level	Depth	${\tt Control}$	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	52 674	0.174	15.8	230.3	ОК
		Summer			19.2		
		Summer					O K
		Summer			20.0		O K
		Summer			20.0		ОК
240	min	Summer	52.906	0.406	20.0	561.8	ОК
360	min	Summer	52.918	0.418	20.0	579.9	O K
480	min	Summer	52.921	0.421	20.0	584.3	O K
600	min	Summer	52.920	0.420	20.0	583.1	O K
720	min	Summer	52.916	0.416	20.0	577.8	O K
960	min	Summer	52.904	0.404	20.0	559.9	O K
1440	min	Summer	52.871	0.371	20.0	510.7	O K
2160	min	Summer	52.818	0.318	19.9	433.9	O K
2880	min	Summer	52.773	0.273	19.6	369.2	O K
4320	min	Summer	52.712	0.212	18.9	283.1	O K
5760	min	Summer	52.684	0.184	16.8	244.3	O K

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	60.278	0.0	363.0	90
30	min	Summer	38.832	0.0	472.3	97
60	min	Summer	24.003	0.0	621.6	120
120	min	Summer	14.465	0.0	750.4	162
180	min	Summer	10.672	0.0	830.1	208
240	min	Summer	8.577	0.0	888.6	258
360	min	Summer	6.291	0.0	974.9	344
480	min	Summer	5.045	0.0	1039.0	406
600	min	Summer	4.250	0.0	1089.6	470
720	min	Summer	3.693	0.0	1131.2	536
960	min	Summer	2.957	0.0	1197.4	668
1440	min	Summer	2.161	0.0	1293.1	930
2160	min	Summer	1.578	0.0	1503.7	1308
2880	min	Summer	1.262	0.0	1600.8	1668
4320	min	Summer	0.921	0.0	1740.2	2352
5760	min	Summer	0.736	0.0	1884.8	3064
		©	1982-20	20 Inno	ovyze	

Ardent		Page 2
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micro
Date 12/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovyze	Source Control 2020.1	

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
			(111)	(111)	(1,5)	(111 /	
7200	min	Summer	52.666	0.166	14.9	219.4	O K
8640	min	Summer	52.653	0.153	13.4	202.0	O K
10080	min	Summer	52.643	0.143	12.2	188.7	O K
15	min	Winter	52.695	0.195	17.9	260.2	ОК
30	min	Winter	52.761	0.261	19.5	351.7	ОК
60	min	Winter	52.833	0.333	19.9	455.1	O K
120	min	Winter	52.905	0.405	20.0	561.0	O K
180	min	Winter	52.942	0.442	20.0	615.8	O K
240	min	Winter	52.962	0.462	20.0	646.1	ОК
360	min	Winter	52.977	0.477	20.0	668.9	ОК
480	min	Winter	52.975	0.475	20.0	666.9	O K
600	min	Winter	52.970	0.470	20.0	658.8	O K
720	min	Winter	52.962	0.462	20.0	646.6	O K
960	min	Winter	52.940	0.440	20.0	612.6	ОК
1440	min	Winter	52.883	0.383	20.0	528.8	ОК
2160	min	Winter	52.801	0.301	19.8	409.3	ОК
2880	min	Winter	52.739	0.239	19.3	320.2	ОК
4320	min	Winter	52.682	0.182	16.6	241.7	O K
5760	min	Winter	52.657	0.157	13.9	207.5	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
7200	min	Summer	0.619	0.0	1978.1	3776
8640	min	Summer	0.537	0.0	2055.2	4504
10080	min	Summer	0.476	0.0	2116.2	5216
15	min	Winter	60.278	0.0	409.0	88
30	min	Winter	38.832	0.0	529.4	100
60	min	Winter	24.003	0.0	697.1	122
120	min	Winter	14.465	0.0	840.2	166
180	min	Winter	10.672	0.0	928.4	212
240	min	Winter	8.577	0.0	992.7	260
360	min	Winter	6.291	0.0	1086.6	362
480	min	Winter	5.045	0.0	1155.1	444
600	min	Winter	4.250	0.0	1209.2	504
720	min	Winter	3.693	0.0	1254.5	576
960	min	Winter	2.957	0.0	1328.6	720
1440	min	Winter	2.161	0.0	1438.2	996
2160	min	Winter	1.578	0.0	1683.6	1376
2880	min	Winter	1.262	0.0	1791.3	1712
4320	min	Winter	0.921	0.0	1941.4	2384
5760	min	Winter	0.736	0.0	2111.8	3096
		©1	1982-20	20 Inno	vyze	

Ardent		Page 3
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Desipago
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

Storm	Max	Max	Max	Max	Status
Event	Level	Depth	Control	Volume	
	(m)	(m)	(1/s)	(m³)	
7200 min Winter	52.642	0.142	12.0	186.6	O K
8640 min Winter	52.631	0.131	10.6	171.8	O K
10080 min Winter	52.622	0.122	9.5	160.5	O K

Storm		Rain Flooded		Discharge	Time-Peak			
		Event		nt (mm/hr)		Volume	(mins)	
					(m³)	(m³)		
	7200	min	Winter	0.619	0.0	2216.8	3808	
	8640	min	Winter	0.537	0.0	2304.0	4536	
	10080	min	Winter	0.476	0.0	2374.6	5280	

Ardent		Page 4
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Desipago
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

Cascade Rainfall Details for W461 - Basin 2B.SRCX

Return Period (years) 10 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.407 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area
From: To: (ha)

0 4 0.000

Ardent		Page 5
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Designado
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovyze	Source Control 2020.1	

Cascade Model Details for W461 - Basin 2B.SRCX

Storage is Online Cover Level (m) 54.000

Tank or Pond Structure

Invert Level (m) 52.500

Depth (m) Area (m²) Depth (m) Area (m²) 0.000 1283.0 1.500 2123.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0196-2000-1200-2000 Design Head (m) 1.200 Design Flow (1/s) 20.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 196 52.500 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500

Control	Points	Head (n) Flow	(1/s)	Control	Points	Head (n) Flow	(1/s)
Design Point	(Calculated)	1.20	0	20.0		Kick-Flo®	0.8	27	16.8
	Flush-Flo™	0.37	6	20.0	Mean Flow ove	r Head Range		-	17.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) E	Flow (1/s)	Depth (m) E	Flow (1/s)	Depth (m)	Flow (1/s)
0.100	6.8	1.200	20.0	3.000	31.0	7.000	46.7
0.200	18.3	1.400	21.5	3.500	33.4	7.500	48.2
0.300	19.8	1.600	22.9	4.000	35.6	8.000	49.8
0.400	20.0	1.800	24.3	4.500	37.7	8.500	51.3
0.500	19.7	2.000	25.5	5.000	39.6	9.000	52.7
0.600	19.4	2.200	26.7	5.500	41.5	9.500	54.1
0.800	17.4	2.400	27.8	6.000	43.3		
1.000	18.3	2.600	28.9	6.500	45.0		

Ardent		Page 1
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micro
Date 12/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovvze	Source Control 2020.1	•

Upstream Outflow To Overflow To Structures

W461 - Basin 2B.SRCX (None) (None) W461 - Basin 2A.SRCX W461 - Basin 4.SRCX

	Sto	cm	Max	Max	Max	Max	Status
	Ever	nt	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	53.137	0.082	4.0	157.0	ОК
30	min	Summer	53.179	0.124	4.1	245.3	O K
60	min	Summer	53.221	0.166	4.1	335.6	O K
120	min	Summer	53.263	0.208	4.2	430.3	Flood Risk
180	min	Summer	53.287	0.232	4.3	487.9	Flood Risk
240	min	Summer	53.305	0.250	4.3	529.9	Flood Risk
360	min	Summer	53.330	0.275	4.3	592.0	Flood Risk
480	min	Summer	53.348	0.293	4.3	638.4	Flood Risk
600	min	Summer	53.363	0.308	4.4	675.2	Flood Risk
720	min	Summer	53.374	0.319	4.4	705.6	Flood Risk
960	min	Summer	53.393	0.338	4.4	753.5	Flood Risk
1440	min	Summer	53.415	0.360	4.4	813.4	Flood Risk
2160	min	Summer	53.424	0.369	4.5	837.4	Flood Risk
2880	min	Summer	53.418	0.363	4.5	822.8	Flood Risk
4320	min	Summer	53.405	0.350	4.4	785.3	Flood Risk

	Stor		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	60.278	0.0	337.2	496
30	min	Summer	38.832	0.0	341.8	564
60	min	Summer	24.003	0.0	620.7	652
120	min	Summer	14.465	0.0	692.5	766
180	min	Summer	10.672	0.0	694.7	850
240	min	Summer	8.577	0.0	695.0	918
360	min	Summer	6.291	0.0	693.4	1030
480	min	Summer	5.045	0.0	690.4	1126
600	min	Summer	4.250	0.0	686.7	1214
720	min	Summer	3.693	0.0	682.5	1294
960	min	Summer	2.957	0.0	673.2	1444
1440	min	Summer	2.161	0.0	652.2	1744
2160	min	Summer	1.578	0.0	1348.4	2276
2880	min	Summer	1.262	0.0	1319.9	2752
4320	min	Summer	0.921	0.0	1240.0	3516

Ardent		Page 2
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Drainage
Innovyze	Source Control 2020.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
5760	min	Summer	53.390	0.335	4.4	747.1	Flood Risk
7200	min	Summer	53.376	0.321	4.4	709.0	Flood Risk
8640	min	Summer	53.361	0.306	4.4	671.1	Flood Risk
10080	min	Summer	53.346	0.291	4.3	633.3	Flood Risk
15	min	Winter	53.155	0.100	4.0	193.9	O K
30	min	Winter	53.201	0.146	4.1	291.4	O K
60	min	Winter	53.246	0.191	4.2	391.2	O K
120	min	Winter	53.290	0.235	4.3	495.3	Flood Risk
180	min	Winter	53.317	0.262	4.3	559.6	Flood Risk
240	min	Winter	53.336	0.281	4.3	607.3	Flood Risk
360	min	Winter	53.364	0.309	4.4	678.0	Flood Risk
480	min	Winter	53.384	0.329	4.4	731.1	Flood Risk
600	min	Winter	53.400	0.345	4.4	773.6	Flood Risk
720	min	Winter	53.413	0.358	4.4	808.9	Flood Risk
960	min	Winter	53.434	0.379	4.5	865.3	Flood Risk
1440	min	Winter	53.461	0.406	4.5	941.5	Flood Risk
2160	min	Winter	53.476	0.421	4.5	985.2	Flood Risk
2880	min	Winter	53.474	0.419	4.5	977.4	Flood Risk
4320	min	Winter	53.455	0.400	4.5	923.2	Flood Risk

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
5760	min	Summer	0.736	0.0	1883.2	4304
7200	min	Summer	0.619	0.0	1978.0	5120
8640	min	Summer	0.537	0.0	2053.9	5936
10080	min	Summer	0.476	0.0	2114.9	6744
15	min	Winter	60.278	0.0	340.0	518
30	min	Winter	38.832	0.0	344.8	599
60	min	Winter	24.003	0.0	693.1	702
120	min	Winter	14.465	0.0	701.4	828
180	min	Winter	10.672	0.0	704.1	914
240	min	Winter	8.577	0.0	704.8	986
360	min	Winter	6.291	0.0	703.8	1104
480	min	Winter	5.045	0.0	701.2	1204
600	min	Winter	4.250	0.0	697.8	1292
720	min	Winter	3.693	0.0	694.0	1374
960	min	Winter	2.957	0.0	685.4	1522
1440	min	Winter	2.161	0.0	665.8	1798
2160	min	Winter	1.578	0.0	1380.8	2296
2880	min	Winter	1.262	0.0	1354.7	2884
4320	min	Winter	0.921	0.0	1281.8	3708
		©1	1982-20	20 Inno	vyze	

Ardent		Page 3
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Desipago
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovvze	Source Control 2020.1	

Storm Event		Depth	Max Control (1/s)		Status	
5760 min Win	ter 53.437	0.382	4.5	873.5	Flood Risk	
7200 min Win	ter 53.417	0.362	4.5	817.7	Flood Risk	
8640 min Win	ter 53.395	0.340	4.4	759.1	Flood Risk	
10080 min Win	ter 53.372	0.317	4.4	698.7	Flood Risk	

Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
5760 min Winter	0.736	0.0	2111.5	4616
7200 min Winter	0.619	0.0	2216.5	5520
8640 min Winter	0.537	0.0	2302.6	6408
10080 min Winter	0.476	0.0	2326.7	7264

Ardent		Page 4
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Desipago
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

Cascade Rainfall Details for W461 - Basin 2C.SRCX

Return Period (years) 10 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.407 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

Total Area (ha) 0.000

Time (mins) Area
From: To: (ha)

0 4 0.000

Ardent		Page 5
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1:100 yr + 40% CC	
London, EC3M 5JE	Basin 2A	Micco
Date 12/05/2022	Designed by AW	Desipago
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

Cascade Model Details for W461 - Basin 2C.SRCX

Storage is Online Cover Level (m) 53.550

Tank or Pond Structure

Invert Level (m) 53.055

Depth (m) Area (m²) Depth (m) Area (m²) 0.000 1832.0 0.495 3093.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0094-4200-1200-4200 Design Head (m) 1.200 Design Flow (1/s) 4.2 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 94 52.050 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m	Flow ((1/s)	Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.20)	4.2		Kick-Flo®	0.742	3.4
	Flush-Flo™	0.35	3	4.2	Mean Flow ove	r Head Range	-	3.7

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Fl	Low (1/s)	Depth (m) Fl	ow (1/s)	Depth (m) Flow	v (1/s)	Depth (m)	Flow (1/s)
0.100	3.0	1.200	4.2	3.000	6.4	7.000	9.6
0.200	3.9	1.400	4.5	3.500	6.9	7.500	9.9
0.300	4.2	1.600	4.8	4.000	7.4	8.000	10.2
0.400	4.2	1.800	5.1	4.500	7.8	8.500	10.5
0.500	4.1	2.000	5.3	5.000	8.2	9.000	10.8
0.600	3.9	2.200	5.6	5.500	8.6	9.500	11.1
0.800	3.5	2.400	5.8	6.000	8.9		
1.000	3.9	2.600	6.0	6.500	9.3		

Ardent		Page 1
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1: 100 yr + 40% CC	
London, EC3M 5JE	Basin 4	Micro
Date 13/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovyze	Source Control 2020.1	•

Upstream Outflow To Overflow To Structures

(None) W461 - Basin 2B.SRCX (None)

	Stor		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	0 252	0 252	1.0	54.3	ОК
		Summer			1.0	69.6	O K
		Summer			1.0		O K
120		Summer		0.431			
		Summer		0.462		100.0	
240	mın	Summer	0.482	0.482	1.0	115.0	O K
360	min	Summer	0.507	0.507	1.0	122.1	O K
480	min	Summer	0.520	0.520	1.0	126.1	O K
600	min	Summer	0.528	0.528	1.0	128.4	ОК
720	min	Summer	0.531	0.531	1.0	129.4	ОК
960	min	Summer	0.531	0.531	1.0	129.4	ОК
1440	min	Summer	0.519	0.519	1.0	125.9	ОК
2160	min	Summer	0.499	0.499	1.0	119.9	ОК
2880	min	Summer	0.477	0.477	1.0	113.6	ОК
4320	min	Summer	0.429	0.429	1.0	99.8	ОК
5760	min	Summer	0.381	0.381	1.0	86.9	ОК

	Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	60.278	0.0	53.2	26
30	min	Summer	38.832	0.0	67.9	41
60	min	Summer	24.003	0.0	87.2	70
120	min	Summer	14.465	0.0	105.1	130
180	min	Summer	10.672	0.0	116.2	190
240	min	Summer	8.577	0.0	124.3	248
360	min	Summer	6.291	0.0	136.2	366
480	min	Summer	5.045	0.0	144.7	486
600	min	Summer	4.250	0.0	150.8	604
720	min	Summer	3.693	0.0	154.4	724
960	min	Summer	2.957	0.0	154.8	960
1440	min	Summer	2.161	0.0	148.3	1230
2160	min	Summer	1.578	0.0	208.0	1608
2880	min	Summer	1.262	0.0	221.6	2020
4320	min	Summer	0.921	0.0	241.7	2812
5760	min	Summer	0.736	0.0	259.5	3576

Ardent		Page 2
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1: 100 yr + 40% CC	
London, EC3M 5JE	Basin 4	Micco
Date 13/05/2022	Designed by AW	Drainage
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)		Status	
7200	min	Summer	0.337	0.337	1.0	75.3	ОК
8640	min	Summer	0.296	0.296	1.0	64.9	O K
10080	min	Summer	0.259	0.259	1.0	55.8	O K
15	min	Winter	0.280	0.280	1.0	60.9	ОК
30	min	Winter	0.348	0.348	1.0	78.2	O K
60	min	Winter	0.414	0.414	1.0	95.7	O K
120	min	Winter	0.477	0.477	1.0	113.4	O K
180	min	Winter	0.511	0.511	1.0	123.4	O K
240	min	Winter	0.533	0.533	1.0	130.0	O K
360	min	Winter	0.561	0.561	1.0	138.5	O K
480	min	Winter	0.577	0.577	1.0	143.5	O K
600	min	Winter	0.587	0.587	1.0	146.5	O K
720	min	Winter	0.593	0.593	1.0	148.3	O K
960	min	Winter	0.596	0.596	1.0	149.4	O K
1440	min	Winter	0.586	0.586	1.0	146.3	O K
2160	min	Winter	0.560	0.560	1.0	138.3	O K
2880	min	Winter	0.533	0.533	1.0	130.0	O K
4320	min	Winter	0.469	0.469	1.0	111.3	O K
5760	min	Winter	0.392	0.392	1.0	89.7	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
7200	min	Summer	0.619	0.0	272.5	4328
8640	min	Summer	0.537	0.0	283.6	5096
10080	min	Summer	0.476	0.0	293.0	5760
15	min	Winter	60.278	0.0	59.4	26
30	min	Winter	38.832	0.0	75.2	41
60	min	Winter	24.003	0.0	97.7	70
120	min	Winter	14.465	0.0	117.5	128
180	min	Winter	10.672	0.0	129.7	186
240	min	Winter	8.577	0.0	138.6	244
360	min	Winter	6.291	0.0	150.8	360
480	min	Winter	5.045	0.0	157.4	476
600	min	Winter	4.250	0.0	158.9	592
720	min	Winter	3.693	0.0	158.2	706
960	min	Winter	2.957	0.0	155.4	930
1440	min	Winter	2.161	0.0	149.1	1358
2160	min	Winter	1.578	0.0	232.9	1696
2880	min	Winter	1.262	0.0	248.0	2164
4320	min	Winter	0.921	0.0	268.5	3108
5760	min	Winter	0.736	0.0	290.6	3872
		©1	982-20	20 Inno	vyze	

Ardent		Page 3
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1: 100 yr + 40% CC	
London, EC3M 5JE	Basin 4	Micco
Date 13/05/2022	Designed by AW	Desinado
File W461 - Catchment 2 Casca	Checked by BB	Dialilage
Innovyze	Source Control 2020.1	

Storm Event	Max Level (m)	-	Max Control (1/s)		Status
7200 min Winter				71.6	O K
8640 min Winter 10080 min Winter			1.0	56.3 44.0	0 K 0 K

Storm		Rain Flooded		Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
7200	min Winter	0.619	0.0	305.3	4616	
8640	min Winter	0.537	0.0	317.7	5352	
10080	min Winter	0.476	0.0	328.3	5960	

Ardent		Page 4
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1: 100 yr + 40% CC	
London, EC3M 5JE	Basin 4	Micco
Date 13/05/2022	Designed by AW	Designation
File W461 - Catchment 2 Casca	Checked by BB	Drainage
Innovyze	Source Control 2020.1	

Cascade Rainfall Details for W461 - Basin 4.SRCX

 Return
 Redurn (years)
 10
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.407
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +0

Time Area Diagram

Total Area (ha) 0.490

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.163	4	8	0.163	8	12	0.163

Ardent		Page 5
3rd Floor, The Hallmark Building	Brook Farm	
52-56 LeadenHall Street	1: 100 yr + 40% CC	
London, EC3M 5JE	Basin 4	Micco
Date 13/05/2022	Designed by AW	Designation
File W461 - Catchment 2 Casca	Checked by BB	Dialilade
Innovyze	Source Control 2020.1	

Cascade Model Details for W461 - Basin 4.SRCX

Storage is Online Cover Level (m) 1.500

Tank or Pond Structure

Invert Level (m) 0.000

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0.000 191.0 1.200 473.0 1.500 556.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0051-1300-1200-1300 Design Head (m) 1.200 Design Flow (1/s) 1.3 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 51 0.000 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m) F	low (1/s)
Design Point	(Calculated)	1.200	1.3	Kick-Flo®	0.459	0.8
	Flush-Flo™	0.227	1.0	Mean Flow over Head Range	_	1.0

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Fl	ow (1/s)	Depth (m)	Flow (1/s)	Depth (m) F	low (1/s)	Depth (m)	Flow (1/s)
0.100	0.9	1.200	1.3	3.000	2.0	7.000	2.9
0.200	1.0	1.400	1.4	3.500	2.1	7.500	3.0
0.300	1.0	1.600	1.5	4.000	2.2	8.000	3.1
0.400	1.0	1.800	1.6	4.500	2.4	8.500	3.2
0.500	0.9	2.000	1.6	5.000	2.5	9.000	3.3
0.600	1.0	2.200	1.7	5.500	2.6	9.500	3.4
0.800	1.1	2.400	1.8	6.000	2.7		
1.000	1.2	2.600	1.8	6.500	2.8		

Appendix G SuDS Treatment Table Indices

<u>Pollution hazard indices for different land use classifications (land use shaded grey applicable for the development)</u>

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydrocarbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, home zones and general access roads) and non-residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non-residential car parking with frequent change (e.g. hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	0.7	0.6	0.7
Sites with heavy pollution (e.g. haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways	High	0.8	0.8	0.9

<u>Indicative SuDS mitigation indices for discharges to surface waters</u> (SuDS components shaded grey applicable to this development)

	Mitigation indices		
Type of SuDS component	TSS	Metals	Hydrocarbons
Filter strip	0.4	0.4	0.5
Filter drain	0.4	0.4	0.4
Swale	0.5	0.6	0.6
Bio retention system	0.8	0.8	0.8
Permeable pavement	0.7	0.6	0.7
Detention basin	0.5	0.5	0.6
Pond	0.7	0.7	0.5
Wetland	0.8	0.8	0.8
Proprietary treatment systems	These must demonstrate that they can address each of the contaminant types to acceptable levels for frequent events up to approximately the 1 in 1 year return period event, for inflow concentrations relevant to the contributing drainage area.		

Indicative SuDS mitigation indices for discharges to surface waters

Catchment 1

For surface water discharge from Residential Parking Areas and Low Traffic Roads <300 traffic movements/day				
	Required mitigation indices			
Source	TSS	Metals	Hydrocarbons	
Medium – Catchment 1	0.7	0.6	0.7	
Medium – Catchment 2	0.7	0.6	0.7	
Low – Catchment 4	0.5	0.4	0.4	
Ċ	atchment 1 - Drainage	Network		
Basin 1A	0.5	0.5	0.6	
Basin 1B	0.5 x 0.5	0.5 x 0.5	0.6 x 0.5	
Check	+0.05	+0.15	+0.2	
C	atchment 2 - Drainage	Network		
Basin 2A	0.5	0.5	0.6	
Basin 2B	0.5 x 0.5	0.5 x 0.5	0.6 x 0.5	
Basin 2C	0.5 x 0.5	0.5 x 0.5	0.6 x 0.5	
Check	+0.3	+0.4	+0.5	
Catchment 4 - Drainage Network				
Basin 4	0.5	0.5	0.6	
Basin 2B	0.5 x 0.5	0.5 x 0.5	0.6 x 0.5	
Basin 2C	0.5 x 0.5	0.5 x 0.5	0.6 x 0.5	
Check	+0.5	+0.6	+0.8	

Total SuDS mitigation index = mitigation index₁ + $(0.5 \times mitigation index_2)$

Appendix H
Maintenance Schedule

Maintenance and Management

The attenuation basins and swale would be maintained by a management company set up by the developer. As construction has not yet commenced, the process of finalising the management company contract has not yet commenced. The developer will ensure that the measures as outlined below form part of the management company contract details, for the ongoing maintenance of all SuDS features on site.

The indicative maintenance requirements for each proposed SuDS component is given below. Taken from CIRIA report C753 "The SuDS Manual".

Drainage Pipes

Maintenance schedule	Required action	Typical frequency
Regular	Remove sediment and debris from inspection chambers and hydrobrake chambers	Annually
Maintenance	Cleaning of gutters and any filters on downpipes	Annually
	Remove any root ingress	As required
Occasional Maintenance	CCTV survey of drains to check alignment, cracking and joint displacement	10 year intervals

Detention Basins

MAINTENANCE SCHEDULE	REQUIRED ACTION	FREQUENCY
	Litter and debris removal	Monthly (or as required)
	Cut the grass – for spillways and	Monthly (during growing
	access routes	season, or as required)
Regular		
Maintenance	Cut the meadow grass in and	Half yearly (spring, before
	around the basin	nesting season, and autumn)
	Manage other vegetation and	Monthly (at start, then as
	remove nuisance plants	required)

	Inspect inlets, outlets and overflows for evidence of blockage and clear if required	Monthly
	Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly
	Inspect inlets and facility structure for all silt accumulation. Establish appropriate silt removal frequencies	Monthly (for first year) then annually or as required
	Check any mechanical devices e.g. penstocks	Half yearly
	Tidy all dead growth before start of growing season	Annually
	Remove sediment from inlet, outlet and forebay	Annually or as required
	Manage wetland plants in outlet pool – where provided	Annually
	Re-seed areas of poor vegetation growth	As required
Occasional	Prune and trim any trees and remove cuttings	Every 2 years, or as required
Maintenance	Remove sediment from inlets, outlets, forebay and main basin where required	Every 5 years, or as required (likely to be minimal requirements where effective upstream source control is provided)
	Repair erosion or other damage by re-turfing or reseeding	As required
Remedial Actions	Relevel uneven surfaces and reinstate design levels	As required
	Realign rip-rap	As required
	Repair / rehabilitate inlets, outlets and overflows	As required

<u>Swale</u>

Maintenance	Maintenance Task	Frequency
Period		
	Remove litter and debris	Monthly, or as required
	Cut the grass – to retain grass height within specified design range	Monthly (during growing season) or as required
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required
	Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly
Regular Maintenance	Inspect infiltration surfaces for ponding, compaction, silt accumulation, record areas where water is ponding for > 48 hours	Monthly, or when required
	Inspect vegetation coverage	Monthly for 6 months, quarterly for 2 years, then half yearly
	Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies	Half yearly
Occasional Maintenance	Reseed areas of poor vegetation growth; alter plant types to better suit conditions, if required	As required or if bare soil is exposed over > 10% of the filter strip area
	Repair erosion or other damage by re-turfing or reseeding	As required
Remedial Actions	Relevel uneven surfaces and reinstate design levels	As required
	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface	As required

SuDS Maintenance & Management Plan

Remove build-up of sediment on upstream gravel trench, flow spreader or at top of filter strip	As required
Remove and dispose of oils or petrol residues using safe standard practices	As required

Appendix I

Anglian Water Capacity Confirmation

Pre-Planning Assessment Report

Brook Farm, Hadleigh

InFlow Reference: PPE-0147837

Assessment Type: Used Water

Report published: 30/05/2022

Thank you for submitting a pre-planning enquiry.

This has been produced for COUNTRYSIDE PROPERTY PLC.

Your reference number is PPE-0147837.

This report can be submitted as a drainage strategy for the development should it seek planning permission.

If you have any questions upon receipt of this report, you can submit a further question via InFlow. Alternatively, please contact the Planning & Capacity team on 07929 786 955 or email planningliaison@anglianwater.co.uk

Section 1 - Proposed development

The response within this report has been based on the following information which was submitted as part of your application:

List of planned developments			
Type of development	No. Of units		
Dwellings	173		

The anticipated residential build rate is:

Year	Y1	Y2	Y3	Y4
Build rate	50	50	50	23

Development type: Greenfield
Planning application status: Unknown
Site grid reference number: TQ8158188282

The comments contained within this report relate to the public water mains and sewers indicated on our records. Your attention is drawn to the disclaimer in the useful information section of this report.

Section 2 - Assets affected

Our records indicate that we have the following types of assets within or overlapping the boundary of your development site as listed in the table below.

Additionally, it is highly recommended that you carry out a thorough investigation of your proposed working area to establish whether any unmapped public or private sewers and lateral drains are in existence. We are unable to permit development either over or within the easement strip without our prior consent. The extent of the easement is provided in the table below. Please be aware that the existing water mains/public sewers should be located in highway or open space and not in private gardens. This is to ensure available access for any future maintenance and repair and this should be taken into consideration when planning your site layout.

Water and Used water easement information			
Asset type	Pipe size (mm)	Total easement required (m)	
Sewer mains	6	3.00 m either side of the centre line	
Sewer mains	450	3.50 m either side of the <u>centre</u> line	
Sewer mains	9	3.00 m either side of the centre line	
Sewer mains	15	3.00 m either side of the centre line	
Sewer mains	12	3.00 m either side of the centre line	

If it is not possible to avoid our assets then these may need to be diverted in accordance with Section 185 of the Water Industry Act (1991). You will need to make a formal application if you would like a diversion to be considered.

Due to the private sewer transfer in October 2011 many newly adopted public used water assets and their history are not indicated on our records. You also need to be aware that your development site may contain private water mains, drains or other assets not shown on our records. These are private assets and not the responsibility of Anglian Water but that of the landowner.

Section 3 - Water recycling services

In examining the used water system we assess the ability for your site to connect to the public sewerage network without causing a detriment to the operation of the system. We also assess the receiving water recycling centre and determine whether the water recycling centre can cope with the increased flow and effluent quality arising from your development.

Water recycling centre

The foul drainage from the proposed development is in the catchment of Southend Water Recycling Centre, which currently has capacity to treat the flows from your development site.

Anglian Water cannot reserve capacity and the available capacity at the water recycling centre can be reduced at any time due to growth, environmental and regulation driven changes.

Used water network

Our assessment has been based on development flows connecting to the nearest foul water sewer of the same size or greater pipe diameter to that required to drain the site. The infrastructure to convey foul water flows to the receiving sewerage network is assumed to be the responsibility of the developer. Conveyance to the connection point is considered as Onsite Work and includes all work carried out upstream from of the point of connection, including making the connection to our existing network. This connection point has been determined in reference to the calculated discharge flow and on this basis, a 150mm internal diameter pipe is required to drain the development site. The nearest practicable connection is to the 150mm diameter sewer downstream of manhole 6300 at National Grid Reference NGR TQ 81699 88317. Anglian water has assessed the impact of gravity flows from the planned development to the public foul sewerage network. We can confirm that this is acceptable as the foul sewerage system, at present, has available capacity for your site. Please note that Anglian Water will request a suitably worded condition at planning application stage to ensure this strategy is implemented to mitigate the risk of flooding.

It is assumed that the developer will provide the necessary infrastructure to convey flows from the site to the network. Consequently, this report does not include any costs for the conveyance of flows.

Surface water disposal

You indicated on the Pre-Planning Application form that a connection to the public surface water sewer network is not required as infiltration techniques can be utilised. Therefore a capacity assessment has not been made on the public surface water network.

As you may be aware, Anglian Water will consider the adoption of SuDs provided that they meet the criteria outline in our SuDs adoption manual. This can be found on our website. We will adopt features located in public open space that are designed and constructed, in conjunction with the Local Authority and Lead Local Flood Authority (LLFA), to the criteria within our SuDs adoption manual. Specifically, developers must be able to demonstrate:

- 1. Effective upstream source control.
- 2. Effective exceedance design, and
- 3. Effective maintenance schedule demonstrating than the assets can be maintained both now and in the future with adequate access.

If you wish to look at the adoption of any SuDs then an expression of interest form can be found on our website

As the proposed method of surface water disposal is not relevant to Anglian Water; we suggest that you contact the relevant Local Authority, Lead Local Flood Authority, the Environment Agency or the Internal Drainage Board, as appropriate.

Trade Effluent

We note that you do not have any trade effluent requirements. Should this be required in the future you will need our written formal consent. This is in accordance with Section 118 of the Water Industry Act (1991).

Used Water Budget Costs

Your development site will be required to pay an Infrastructure charge for each new property connecting to the public water and sewerage network that benefits from Full planning permission. The infrastructure charge replaces the zonal charge as previously identified.

You will be required to pay an infrastructure charge upon connection for each new plot on your development site. The infrastructure charge are types of charges set out in Section 146(2) of the Water Industry Act 1991.

The charge should be paid by anyone who wishes to build or develop a property and is payable upon request of connection.

• The Infrastructure Charge is based on the cost of any reinforcement and upgrades to our existing network ("Network Reinforcements"), whether designed to address strategic or local capacity issues. For more information on our Infrastructure Charge, please see the 'Useful Information' section of this report.

Infrastructure charges are raised on a standard basis of one charge per new connection (one for water and one for sewerage).

The Water Recycling Infrastructure charge for your dwellings is:

Infrastructure charge	Number of units	Total
£ 490	173	£84,770.00

Please note that you should also budget for infrastructure charges on non-household premises where applicable and these will be calculated according to the number and type of water fittings in the premises. This is called the "relevant multiplier" method of calculating the charge and the relevant multiplier will be applied to the figures set out in our 2022-23 Developer Charging Arrangements to arrive at the amount payable. Details of the relevant multiplier for each fitting can be found on our website.

Section 4 - Map of Proposed Point of Connection(s)



Figure 1: Showing your water recycling foul point of connection

Section 5 - Useful information

Water Industry Act - Key used water sections

Section 98:

This provides you with the right to requisition a new public sewer. The new public sewer can be constructed by Anglian Water on your behalf. Alternatively, you can construct the sewer yourself under section 30 of the Anglian Water Authority Act 1977.

Section 102:

This provides you with the right to have an existing sewerage asset vested by us. It is your responsibility to bring the infrastructure to an adoptable condition ahead of the asset being vested.

Section 104:

This provides you with the right to have a design technically vetted and an agreement reached that will see us adopt your assets following their satisfactory construction and connection to the public sewer.

Section 106:

This provides you with the right to have your constructed sewer connected to the public sewer.

Section 185

This provides you with the right to have a public sewerage asset diverted.

Details on how to make a formal application for a new sewer, new connection or diversion are available on our website or via our Development Services team on **0345 60 66 087**.

Sustainable drainage systems

Many existing urban drainage systems can cause problems of flooding, pollution or damage to the environment and are not resilient to climate change in the long term. .

Our preferred method of surface water disposal is through the use of Sustainable Drainage Systems or SuDS.

SuDS are a range of techniques that aim to mimic the way surface water drains in natural systems within urban areas. For more information on SuDS, please visit our website

We recommend that you contact the Local Authority and Lead Local Flood Authority (LLFA) for your site to discuss your application.

Private sewer transfers

Sewers and lateral drains connected to the public sewer on the 1 July 2011 transferred into Water Company ownership on the 1 October 2011. This follows the implementation of the Floods and Water Management Act (FWMA). This included sewers and lateral drains that were subject to an existing Section 104 Adoption Agreement and those that were not. There were exemptions and the main non-transferable assets were as follows:

Surface water sewers and lateral drains that do not discharge to the public sewer, e.g. those that discharged to a watercourse.

Foul sewers and lateral drains that discharged to a privately owned sewage treatment/collection facility.

Pumping stations and rising mains will transfer between 1 October 2011 and 1 October 2016.

The implementation of Section 42 of the FWMA will ensure that future private sewers will not be created. It is anticipated that all new sewer applications will need to have an approved section 104 application ahead of a section 106 connection.

It is anticipated that all new sewer applications will need to have an approved Section 104 application ahead of a Section 106 connection

Encroachment

Anglian Water operates a risk based approach to development encroaching close to our used water infrastructure. We assess the issue of encroachment if you are planning to build within 400 metres of a water recycling centre or, within 15 metres to 100 metres of a pumping station. We have more information available on our website

Locating our assets

Maps detailing the location of our water and used water infrastructure including both underground assets and above ground assets such as pumping stations and recycling centres are available from digdat

All requests from members of the public or non-statutory bodies for maps showing the location of our assets will be subject to an appropriate administrative charge.

We have more information on our website

Charging arrangements

Our charging arrangements and summary for this year's water and used water connection and infrastructure charges can be found on our website

Section 6 - Disclaimer

The information provided in this report is based on data currently held by Anglian Water Services Limited ('Anglian Water') or provided by a third party. Accordingly, the information in this report is provided with no guarantee of accuracy, timeliness, completeness and is without indemnity or warranty of any kind (express or implied).

This report should not be considered in isolation and does not nullify the need for the enquirer to make additional appropriate searches, inspections and enquiries. Anglian Water supports the plan led approach to sustainable development that is set out in the National Planning Policy Framework ('NPPF') and any infrastructure needs identified in this report must be considered in the context of current, adopted and/or emerging local plans. Where local plans are absent, silent or have expired these needs should be considered against the definition of sustainability holistically as set out in the NPPF.

Whilst the information in this report is based on the presumption that proposed development obtains planning permission, nothing in this report confirms that planning permission will be granted or that Anglian Water will be bound to carry out the works/proposals contained within this report.

No liability whatsoever, including liability for negligence is accepted by Anglian Water or its partners, employees or agents, for any error or omission, or for the results obtained from the use of this report and/or its content.

Furthermore, in no event will any of those parties be liable to the applicant or any third party for any decision made or action taken as a result of reliance on this report.

This report is valid from the date issued and the enquirer is advised to resubmit their request for an up to date report should there be a delay in submitting any subsequent application for water supply/sewer connection(s). Our pre-planning reports are valid for 12 months, however please note Anglian Water cannot reserve capacity and available capacity in our network can be reduced at any time due to increased requirements from existing businesses and houses as well as from new housing and new commercial developments.